Generates multi-instrument symbolic music (MIDI), based on user-provided emotions from valence-arousal plane. In simpler words, it can generate happy (positive valence, positive arousal), calm (positive valence, negative arousal), angry (negative valence, positive arousal) or sad (negative valence, negative arousal) music.
Source code for our paper "Symbolic music generation conditioned on continuous-valued emotions", Serkan Sulun, Matthew E. P. Davies, Paula Viana, 2022. https://ieeexplore.ieee.org/document/9762257
To cite:
S. Sulun, M. E. P. Davies and P. Viana, "Symbolic music generation conditioned on continuous-valued emotions," in IEEE Access, doi: 10.1109/ACCESS.2022.3169744.
Required Python libraries: Numpy, Pytorch, Pandas, pretty_midi, Pypianoroll, tqdm, Spotipy, Pytables. Or run: pip install -r requirements.txt
To create the Lakh-Spotify dataset:
Go to the src/create_dataset
folder
Download the datasets:
MSD summary file http://labrosa.ee.columbia.edu/millionsong/sites/default/files/AdditionalFiles/msd_summary_file.h5
Echonest mapping dataset
ftp://ftp.acousticbrainz.org/pub/acousticbrainz/acousticbrainz-labs/download/msdrosetta/millionsongdataset_echonest.tar.bz2
Alternatively: https://drive.google.com/file/d/17Exfxjtq7bI9EKtEZlOrBCkx8RBx7h77/view?usp=sharing
Lakh-MSD matching scores file http://hog.ee.columbia.edu/craffel/lmd/match_scores.json
Extract when necessary, and place all inside folder ./data_files
Get Spotify client ID and client secret:
https://developer.spotify.com/dashboard/applications
Then, fill in the variables "client_id" and "client_secret" in src/create_dataset/utils.py
Run run.py
.
To preprocess and create the training dataset:
src/data
folder and run preprocess_pianorolls.py
To generate MIDI using pretrained models:
Download model(s) from the following link: https://drive.google.com/drive/folders/1R5-HaXmNzXBAhGq1idrDF-YEKkZm5C8C?usp=sharing
Extract into the folder output
Go to src
folder and run generate.py
with appropriate arguments. e.g:
python generate.py --model_dir continuous_concat --conditioning continuous_concat --valence -0.8, -0.8 0.8 0.8 --arousal -0.8 -0.8 0.8 0.8
To train:
src
folder and run train.py
with appropriate arguments. e.g:
python train.py --conditioning continuous_concat
There are 4 different conditioning modes:
none
: No conditioning, vanilla model.
discrete_token
: Conditioning using discrete tokens, i.e. control tokens.
continuous_token
: Conditioning using continuous values embedded as vectors, then prepended to the other embedded tokens in sequence dimension.
continuous_concat
: Conditioning using continuous values embedded as vectors, then concatenated to all other embedded tokens in channel dimension.
See config.py
for all options.