|pypi Version| |python version| |pytest| |codecov| |zenodo doi|
.. |pypi Version| image:: https://img.shields.io/pypi/v/seppy?style=flat&logo=pypi :target: https://pypi.org/project/seppy/ .. |python version| image:: https://img.shields.io/pypi/pyversions/seppy?style=flat&logo=python .. |zenodo doi| image:: https://zenodo.org/badge/451799504.svg :target: https://zenodo.org/badge/latestdoi/451799504 .. |pytest| image:: https://github.com/serpentine-h2020/SEPpy/workflows/pytest/badge.svg .. |codecov| image:: https://codecov.io/gh/serpentine-h2020/SEPpy/branch/main/graph/badge.svg?token=FYELM4Y7DF :target: https://codecov.io/gh/serpentine-h2020/SEPpy
This package is in development status! Intended for internal use only, as the syntax is in a floating state and the documentation is incomplete.
A compendium of Python data loaders and analysis tools for in-situ measurements of Solar Energetic Particles (SEP)
So far combines loaders for the following instruments into one PyPI package:
(* Note that solo-epd-loader <https://github.com/jgieseler/solo-epd-loader>
is a PyPI package itself <https://pypi.org/project/solo-epd-loader/>
that just is loaded here for completeness.)
This software is provided "as is", with no guarantee. It is no official data source, and not officially endorsed by the corresponding instrument teams. Please always refer to the official data description of each instrument before using the data!
seppy requires python >= 3.8.
It can be installed from PyPI <https://pypi.org/project/seppy/>
_ using:
.. code:: bash
pip install seppy
The standard usecase is to utilize the ***_load
function, which returns Pandas dataframe(s) of the corresponding measurements and a dictionary containing information on the energy channels. For example the SOHO/ERNE data from Apr 16 to Apr 20, 2021, can be obtained as follows:
.. code:: python
from seppy.loader.soho import soho_load
df, meta = soho_load(dataset="SOHO_ERNE-HED_L2-1MIN", startdate="2021/04/16", enddate="2021/04/20")
Note that the syntax is different for each loader! Please refer to this Notebook for more info and examples for the different data sets! <https://github.com/jgieseler/serpentine/blob/main/notebooks/sep_analysis_tools/data_loader.ipynb>
_
Please cite the following paper if you use seppy in your publication:
Palmroos, C., Gieseler, J., Dresing, N., Morosan, D.E., Asvestari, E., Yli-Laurila, A., Price, D.J., Valkila, S., Vainio, R. (2022).
Solar Energetic Particle Time Series Analysis with Python. Front. Astronomy Space Sci. 9. doi:10.3389/fspas.2022.1073578 <https://doi.org/10.3389/fspas.2022.1073578>
_