The codes and datasets for "IterDE: An Iterative Knowledge Distillation Framework for Knowledge Graph Embeddings". (AAAI2023)
The repo is expended on the basics of OpenKE.
The structure of the folder is shown below:
IterDE
├─checkpoint
├─benchmarks
├─IterDE_FB15K237
├─IterDE_WN18RR
├─openke
├─requirements.txt
└README.md
Introduction to the structure of the folder:
/checkpoint: The generated models are stored in this folder.
/benchmarks: The datasets(FB15K237 and WN18RR) are stored in this folder.
/IterDE_FB15K237: Training for iteratively distilling KGEs on FB15K-237.
/IterDE_WN18RR: Training for iteratively distilling KGEs on WN18RR.
/openke: Codes for the models of distillation for KGEs
/requirements.txt: All the dependencies are shown in this text.
README.md: Instruct on how to realize IterDE.
All experiments are implemented on CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz and GPU GeForce RTX 2080 Ti. The version of Python is 3.7.
Please run as follows to install all the dependencies:
pip3 install -r requirements.txt
cd IterDE
cd openke
bash make.sh
cd ../
cp IterDE_FB15K237/transe_512.py ./
python transe_512.py
cp IterDE_FB15K237/transe_512_256_new.py ./
cp IterDE_FB15K237/transe_512_256_128_new.py ./
cp IterDE_FB15K237/transe_512_256_128_64_new.py ./
cp IterDE_FB15K237/transe_512_256_128_64_32_new.py ./
python transe_512_256_new.py
python transe_512_256_128_new.py
python transe_512_256_128_64_new.py
python transe_512_256_128_64_32_new.py
cp IterDE_WN18RR/com_wn_512.py ./
python com_wn_512.py
cp IterDE_WN18RR/com_512_256_new.py ./
cp IterDE_WN18RR/com_512_256_128_new.py ./
cp IterDE_WN18RR/com_512_256_128_64_new.py ./
cp IterDE_WN18RR/com_512_256_128_64_32_new.py ./
python com_512_256_new.py
python com_512_256_128_new.py
python com_512_256_128_64_new.py
python com_512_256_128_64_32_new.py
We refer to the code of OpenKE. Thanks for their contributions.
If you find the repository helpful, please cite the following paper
@inproceedings{liu2023iterde,
title={IterDE: an iterative knowledge distillation framework for knowledge graph embeddings},
author={Liu, Jiajun and Wang, Peng and Shang, Ziyu and Wu, Chenxiao},
booktitle={AAAI},
year={2023}
}