Originally took from openai/whisperer and rewrote to TS
TypeScript library for normalizing English text. It provides a utility class EnglishTextNormalizer
with methods for normalizing various types of text, such as contractions, abbreviations, and spacing.
EnglishTextNormalizer
consists of other classes you can reuse independently:
EnglishSpellingNormalizer
- uses a dictionary of English words and their American spelling. The dictionary is stored in a JSON file named english.json
EnglishNumberNormalizer
- works specifically to normalize text from English words to actually numbers
BasicTextNormalizer
- provides methods for removing special characters and diacritics from text, as well as splitting words into separate letters.
$ yarn add @shelf/text-normalizer
import {EnglishTextNormalizer} from '@shelf/text-normalizer';
const normalizer = new EnglishTextNormalizer();
console.log(normalizer.normalize("Let's")); // Output: let us
console.log(normalizer.normalize("he's like")); // Output: he is like
console.log(normalizer.normalize("she's been like")); // Output: she has been like
console.log(normalizer.normalize('10km')); // Output: 10 km
console.log(normalizer.normalize('10mm')); // Output: 10 mm
console.log(normalizer.normalize('RC232')); // Output: rc 232
console.log(normalizer.normalize('Mr. Park visited Assoc. Prof. Kim Jr.')); // Output: mister park visited associate professor kim junior
import {EnglishTextNormalizer} from 'https://esm.sh/@shelf/text-normalizer';
const normalizer = new EnglishTextNormalizer();
console.log(normalizer.normalize("Let's")); // Output: let us
console.log(normalizer.normalize("he's like!")); // Output: he is like
import {EnglishNumberNormalizer} from '@shelf/text-normalizer';
const numberNormalizer = new EnglishNumberNormalizer();
console.log(numberNormalizer.normalize('twenty-five')); // Output: 25
console.log(numberNormalizer.normalize('three million')); // Output: 3000000
console.log(numberNormalizer.normalize('two and a half')); // Output: 2.5
console.log(numberNormalizer.normalize('fifty percent')); // Output: 50%
import {EnglishSpellingNormalizer} from '@shelf/text-normalizer';
const spellingNormalizer = new EnglishSpellingNormalizer();
console.log(spellingNormalizer.normalize('colour')); // Output: color
console.log(spellingNormalizer.normalize('organise')); // Output: organize
import {BasicTextNormalizer} from '@shelf/text-normalizer';
const basicNormalizer = new BasicTextNormalizer(true, true);
console.log(basicNormalizer.normalize('Café!')); // Output: c a f e
console.log(basicNormalizer.normalize('Hello [World]')); // Output: h e l l o
The BasicTextNormalizer
constructor accepts two optional boolean parameters:
removeDiacritics
(default: false
): If set to true
, diacritics will be removed from the text.splitLetters
(default: false
): If set to true
, letters will be split into individual characters.Example:
const normalizer = new BasicTextNormalizer(true, true);
EnglishTextNormalizer
combines multiple normalization techniques and may be slower for very large texts. Consider using individual normalizers (EnglishNumberNormalizer
, EnglishSpellingNormalizer
, or BasicTextNormalizer
) if you only need specific functionality.$ git checkout master
$ yarn version
$ yarn publish
$ git push origin master --tags
MIT © Shelf