shibing624 / textgen

TextGen: Implementation of Text Generation models, include LLaMA, BLOOM, GPT2, BART, T5, SongNet and so on. 文本生成模型,实现了包括LLaMA,ChatGLM,BLOOM,GPT2,Seq2Seq,BART,T5,UDA等模型的训练和预测,开箱即用。
Apache License 2.0
937 stars 109 forks source link
bart bert chatglm chatgpt gpt2 llama seq2seq t5 text-generation textgen xlnet

🇨🇳中文 | 🌐English | 📖文档/Docs | 🤖模型/Models

Logo

TextGen: Implementation of Text Generation models

PyPI version Downloads Contributions welcome License Apache 2.0 python_version GitHub issues Wechat Group

📖 Introduction

TextGen实现了多种文本生成模型,包括:LLaMA、ChatGLM、UDA、GPT2、Seq2Seq、BART、T5、SongNet等模型,开箱即用。

🔥 News

[2023/11/02] v1.1.2版本: GPT模型支持了NEFTune给embedding加噪SFT训练方法,SFT中使用 --neft_alpha 参数启用 NEFTune,例如 --neft_alpha 5。详见Release-v1.1.2

[2023/09/05] v1.1.1版本: 支持多卡推理,推理速度加倍,调库textgen做batch推理,多卡推理更方便、快速。详见Release-v1.1.1

[2023/08/23] v1.1.0版本: 发布基于ShareGPT4数据集微调的中英文Vicuna-13B模型shibing624/vicuna-baichuan-13b-chat,和对应的LoRA模型shibing624/vicuna-baichuan-13b-chat-lora,支持多轮对话,评测效果有提升,详见Release-v1.1.0

[2023/08/02] v1.0.2版本: 新增支持ChatGLM2和LLaMA2模型的SFT微调训练,详见Release-v1.0.2

[2023/06/15] v1.0.0版本: 新增ChatGLM/LLaMA/Bloom模型的多轮对话微调训练,并发布医疗问诊LoRA模型shibing624/ziya-llama-13b-medical-lora。详见Release-v1.0.0

[2023/06/02] v0.2.7版本: 新增ChatGLM/LLaMA/Bloom模型的SFT微调训练,并发布适用于通用对话和中文纠错的LoRA模型。详见Release-v0.2.7

😊 Feature

Release Models

release基于textgen训练的中文模型,模型已经release到HuggingFace models,指定模型名称textgen会自动下载模型,可直接使用。

Model Arch Introduction Train Script Predict Script
shibing624/t5-chinese-couplet T5 fine-tuned中文对联后的模型 对联生成模型调研 predict script
shibing624/songnet-base-chinese-songci SongNet fine-tuned宋词后的模型 training script predict script
shibing624/songnet-base-chinese-couplet SongNet fine-tuned对联后的模型 training script predict script
shibing624/chatglm-6b-csc-zh-lora ChatGLM-6B 在27万中文拼写纠错数据shibing624/CSC上微调了一版ChatGLM-6B,纠错效果有提升,发布微调后的LoRA权重 training script predict script
shibing624/chatglm-6b-belle-zh-lora ChatGLM-6B 在100万条中文ChatGPT指令Belle数据集BelleGroup/train_1M_CN上微调了一版ChatGLM-6B,问答效果有提升,发布微调后的LoRA权重 training script predict script
shibing624/llama-13b-belle-zh-lora LLaMA-13B 在100万条中文ChatGPT指令Belle数据集BelleGroup/train_1M_CN上微调了一版Llama-13B,问答效果有提升,发布微调后的LoRA权重 training script predict script
shibing624/chinese-alpaca-plus-7b-hf LLaMA-7B 中文LLaMA-Plus, Alpaca-Plus 7B版本,在LLaMA-7B上扩充了中文词表并继续预训练120G文本(通用领域),在4M指令数据集上微调后得到的中文Alpaca-plus模型 training script predict script
shibing624/chinese-alpaca-plus-13b-hf LLaMA-13B 中文LLaMA-Plus, Alpaca-Plus 13B版本,在LLaMA-13B上扩充了中文词表并继续预训练120G文本(通用领域),在4.3M指令数据集上微调后得到的中文Alpaca-plus模型 training script predict script
shibing624/ziya-llama-13b-medical-lora LLaMA-13B 在240万条中英文医疗数据集shibing624/medical上微调了一版Ziya-LLaMA-13B模型,医疗问答效果有提升,发布微调后的LoRA权重 training script predict script
shibing624/vicuna-baichuan-13b-chat Baichuan-13B-Chat 在10万条多语言ShareGPT GPT4多轮对话数据集shibing624/sharegpt_gpt4上SFT微调了一版baichuan-13b-chat多轮问答模型,日常问答和医疗问答效果有提升,发布微调后的完整模型权重 training script predict script

Evaluation

Model Arch Introduction Score
LLaMA-7B-Chinese-Alpaca LLaMA-7B 复用ymcui/Chinese-LLaMA-Alpaca的评估case和得分 4.92
LLaMA-13B-Chinese-Alpaca LLaMA-13B 复用ymcui/Chinese-LLaMA-Alpaca的评估case和得分 7.05
ChatGLM-6B ChatGLM-6B 基于原生THUDM/chatglm-6b评估测试集得分 7.16
ChatGLM-6B-v1.1 ChatGLM-6B 基于原生THUDM/chatglm-6bv1.1英文优化版模型评估测试集得分 7.18
shibing624/chatglm-6b-belle-zh-lora ChatGLM-6B 基于THUDM/chatglm-6b加载shibing624/chatglm-6b-belle-zh-loraLoRA模型后评估测试集得分 7.03
facat/alpaca-lora-cn-13b LLaMA-13B 基于decapoda-research/llama-13b-hf加载facat/alpaca-lora-cn-13bLoRA模型后评估测试集并标注得分 4.13
Chinese-Vicuna/Chinese-Vicuna-lora-13b-belle-and-guanaco LLaMA-13B 基于decapoda-research/llama-13b-hf加载Chinese-Vicuna/Chinese-Vicuna-lora-13b-belle-and-guanacoLoRA模型后评估测试集并标注得分 3.98
shibing624/chinese-alpaca-plus-7b-hf LLaMA-7B 使用ymcui/Chinese-LLaMA-Alpaca 合并模型方法合并HF权重后,评估测试集并标注得分 6.93
shibing624/chinese-alpaca-plus-13b-hf LLaMA-13B 使用ymcui/Chinese-LLaMA-Alpaca 合并模型方法合并HF权重后,评估测试集并标注得分 7.07
TheBloke/vicuna-13B-1.1-HF LLaMA-13B 使用原生vicuna-13B-1.1合并后的模型,评估测试集并标注得分 5.13
IDEA-CCNL/Ziya-LLaMA-13B-v1 LLaMA-13B 使用姜子牙通用大模型V1,评估测试集并标注得分 6.63

说明:

🚀 Demo

HuggingFace Demo: https://huggingface.co/spaces/shibing624/chinese-couplet-generate

run example: examples/T5/gradio_demo.py to see the demo:

python examples/T5/gradio_demo.py

model trained by examples/t5/T5_Finetune_Chinese_Couplet.ipynb

💾 Install

pip install -U textgen

or

install develop version:

pip install torch # conda install pytorch
git clone https://github.com/shibing624/textgen.git
cd textgen
python setup.py install

▶️ Usage

ChatGLM-6B 模型

使用 ChatGLM-6B 微调后的模型

example: examples/gpt/inference_demo.py

from textgen import GptModel

model = GptModel("chatglm", "THUDM/chatglm-6b", peft_name="shibing624/chatglm-6b-csc-zh-lora")
r = model.predict(["介绍下北京"])
print(r)  # ['北京是中国的首都...']

训练 ChatGLM-6B 微调模型

  1. 支持自定义训练数据集和训练参数,数据集格式参考examples/data/sharegpt_zh_100_format.jsonl
  2. 支持QLoRA、AdaLoRA、LoRA、P_Tuning、Prefix_Tuning等部分参数微调方法,也支持全参微调
  3. 支持多卡训练,支持混合精度训练
  4. 支持多卡推理

example: examples/gpt/training_chatglm_demo.py

单卡训练:

cd examples/gpt
CUDA_VISIBLE_DEVICES=0 python training_chatglm_demo.py --do_train --do_predict --num_epochs 1 --output_dir outputs_chatglm_v1

多卡训练:

cd examples/gpt
CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node 2 training_chatglm_demo.py --do_train --do_predict --num_epochs 20 --output_dir outputs_chatglm_v1

多卡推理:

cd examples/gpt
CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node 2 inference_multigpu_demo.py --model_type chatglm --base_model THUDM/chatglm-6b

LLaMA 模型

使用 LLaMA 微调后的模型

example: examples/gpt/inference_demo.py

show code example and result ```python import sys sys.path.append('../..') from textgen import GptModel model = GptModel("llama", "decapoda-research/llama-7b-hf", peft_name="ziqingyang/chinese-alpaca-lora-7b") r = model.predict(["用一句话描述地球为什么是独一无二的。"]) print(r) # ['地球是唯一一颗拥有生命的行星。'] ```

训练 LLaMA 微调模型

  1. 支持自定义训练数据集和训练参数,数据集格式参考examples/data/sharegpt_zh_100_format.jsonl
  2. 支持QLoRA、AdaLoRA、LoRA、P_Tuning、Prefix_Tuning等部分参数微调方法,也支持全参微调
  3. 支持多卡训练,支持混合精度训练,使用方法同上(ChatGLM多卡训练)
  4. 支持多卡推理

example: examples/gpt/training_llama_demo.py

基于微调(LoRA)模型继续训练

如果需要基于Lora模型继续训练,可以使用下面的脚本合并模型为新的base model,再微调训练即可。

执行以下命令:

python -m textgen/gpt/merge_peft_adapter \
    --model_type llama \
    --base_model_name_or_path path/to/llama/model \
    --tokenizer_path path/to/llama/tokenizer \
    --peft_model_path path/to/lora/model \
    --output_dir merged

参数说明:

--model_type:模型类型,目前支持bloom,llama,baichuan和chatglm
--base_model_name_or_path:存放HF格式的底座模型权重和配置文件的目录
--tokenizer_path:存放HF格式的底座模型tokenizer文件的目录
--peft_model_path:中文LLaMA/Alpaca LoRA解压后文件所在目录,也可使用HF上的Lora模型名称,如`ziqingyang/chinese-alpaca-lora-7b`会自动下载对应模型
--output_dir:指定保存全量模型权重的目录,默认为./merged

训练领域模型

Note: 为了全面的介绍训练医疗大模型的过程,把4阶段训练方法(Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning)单独新建了一个repo:shibing624/MedicalGPT,请移步该repo查看训练方法。

ConvSeq2Seq 模型

训练并预测ConvSeq2Seq模型:

example: examples/seq2sesq/training_convseq2seq_model_demo.py

show code example and result ```python import argparse from loguru import logger import sys sys.path.append('../..') from textgen.seq2seq.conv_seq2seq_model import ConvSeq2SeqModel def main(): parser = argparse.ArgumentParser() parser.add_argument('--train_file', default='../data/zh_dialog.tsv', type=str, help='Training data file') parser.add_argument('--do_train', action='store_true', help='Whether to run training.') parser.add_argument('--do_predict', action='store_true', help='Whether to run predict.') parser.add_argument('--output_dir', default='./outputs/convseq2seq_zh/', type=str, help='Model output directory') parser.add_argument('--max_seq_length', default=50, type=int, help='Max sequence length') parser.add_argument('--num_epochs', default=200, type=int, help='Number of training epochs') parser.add_argument('--batch_size', default=32, type=int, help='Batch size') args = parser.parse_args() logger.info(args) if args.do_train: logger.info('Loading data...') model = ConvSeq2SeqModel(epochs=args.num_epochs, batch_size=args.batch_size, model_dir=args.output_dir, max_length=args.max_seq_length) model.train_model(args.train_file) print(model.eval_model(args.train_file)) if args.do_predict: model = ConvSeq2SeqModel(epochs=args.num_epochs, batch_size=args.batch_size, model_dir=args.output_dir, max_length=args.max_seq_length) sentences = ["什么是ai", "你是什么类型的计算机", "你知道热力学吗"] print("inputs:", sentences) print('outputs:', model.predict(sentences)) if __name__ == '__main__': main() ``` output: ```bash inputs: ["什么是ai", "你是什么类型的计算机", "你知道热力学吗"] outputs: ['人工智能是工程和科学的分支,致力于构建思维的机器。', '我的程序运行在python,所以我在任何运脑上工作!', '我不能错热是一个疯狂的人工智能"200年。'] ```

BART 模型

训练并预测BART模型:

example: examples/seq2sesq/training_bartseq2seq_zh_demo.py

output:

inputs: ['什么是ai', '你是什么类型的计算机', '你知道热力学吗']
outputs: ['人工智能是工程和科学的分支,致力于构', '我的程序运行在python,所以我在任何电脑上', '什么是热力学吗?']

T5 模型

example: examples/t5/training_zh_t5_model_demo.py

show code example and result ```python import argparse from loguru import logger import pandas as pd import sys sys.path.append('../..') from textgen.t5 import T5Model def load_data(file_path): data = [] with open(file_path, 'r', encoding='utf-8') as f: for line in f: line = line.strip('\n') terms = line.split('\t') if len(terms) == 2: data.append(['QA', terms[0], terms[1]]) else: logger.warning(f'line error: {line}') return data def main(): parser = argparse.ArgumentParser() parser.add_argument('--train_file', default='../data/zh_dialog.tsv', type=str, help='Training data file') parser.add_argument('--model_type', default='t5', type=str, help='Transformers model type') parser.add_argument('--model_name', default='Langboat/mengzi-t5-base', type=str, help='Transformers model or path') parser.add_argument('--do_train', action='store_true', help='Whether to run training.') parser.add_argument('--do_predict', action='store_true', help='Whether to run predict.') parser.add_argument('--output_dir', default='./outputs/mengzi_t5_zh/', type=str, help='Model output directory') parser.add_argument('--max_seq_length', default=50, type=int, help='Max sequence length') parser.add_argument('--num_epochs', default=10, type=int, help='Number of training epochs') parser.add_argument('--batch_size', default=32, type=int, help='Batch size') args = parser.parse_args() logger.info(args) if args.do_train: logger.info('Loading data...') # train_data: Pandas DataFrame containing the 3 columns - `prefix`, `input_text`, `target_text`. # - `prefix`: A string indicating the task to perform. (E.g. `"question"`, `"stsb"`) # - `input_text`: The input text. `prefix` is prepended to form the full input. (: ) # - `target_text`: The target sequence train_data = load_data(args.train_file) logger.debug('train_data: {}'.format(train_data[:10])) train_df = pd.DataFrame(train_data, columns=["prefix", "input_text", "target_text"]) eval_data = load_data(args.train_file)[:10] eval_df = pd.DataFrame(eval_data, columns=["prefix", "input_text", "target_text"]) model_args = { "reprocess_input_data": True, "overwrite_output_dir": True, "max_seq_length": args.max_seq_length, "train_batch_size": args.batch_size, "num_train_epochs": args.num_epochs, "save_eval_checkpoints": False, "save_model_every_epoch": False, "evaluate_generated_text": True, "evaluate_during_training": True, "evaluate_during_training_verbose": True, "use_multiprocessing": True, "save_best_model": True, "output_dir": args.output_dir, "use_early_stopping": True, } # model_type: t5 model_name: Langboat/mengzi-t5-base model = T5Model(args.model_type, args.model_name, args=model_args) def count_matches(labels, preds): logger.debug(f"labels: {labels[:10]}") logger.debug(f"preds: {preds[:10]}") match = sum([1 if label == pred else 0 for label, pred in zip(labels, preds)]) logger.debug(f"match: {match}") return match model.train_model(train_df, eval_data=eval_df, matches=count_matches) print(model.eval_model(eval_df, matches=count_matches)) if args.do_predict: model = T5Model(args.model_type, args.output_dir) sentences = ["什么是ai", "你是什么类型的计算机", "你知道热力学吗"] print("inputs:", sentences) print("outputs:", model.predict(sentences)) if __name__ == '__main__': main() ``` output: ```shell inputs: ['什么是ai', '你是什么类型的计算机', '你知道热力学吗'] outputs: ['人工智能有两个广义的定义,任何拟人的机械,如在卡雷尔capeks', '我的程序运行在Python,所以我在任何电脑上工作!', '什么是热力学'] ```

GPT2 模型

中文GPT2 - 文章生成

使用中文数据集(段落格式,\n间隔),训练GPT2模型,可以用于诗歌生成、文章生成等任务。

example: examples/gpt2/training_zh_gpt2_demo.py

中文GPT2 - 对联生成

使用中文对联数据集(tsv格式,\t间隔),自定义数据集读取Dataset,训练GPT2模型,可以用于对联生成、对话生成等任务。

example: examples/gpt2/training_couplet_gpt2_demo.py

GPT2 vs T5:

  1. 都是从Transformer改进来的,T5同时有编码器和解码器,GPT2只有解码器
  2. T5的模型优势是处理给定输入,产出对应输出的任务,如翻译、对话、问答等
  3. GPT2的模型优势是自由创作,如写一篇短文
  4. T5的对联生成效果好于GPT2、GPT2的诗词生成效果好于T5

SongNet 模型

格式控制的文本生成模型,paper见SongNet: Rigid Formats Controlled Text Generation, 适用于强韵律格式要求的诗歌、对联、歌词生成等任务。

example: examples/songnet/training_zh_songnet_demo.py

Keyword Text Augmentation(EDA/UDA)

example: examples/text_augmentation/text_augmentation_demo.py

show code example and result ```python import sys sys.path.append('..') from textgen.augment import TextAugment if __name__ == '__main__': docs = ['主要研究机器学习、深度学习、计算机视觉、智能对话系统相关内容', '晚上肚子好难受', '你会武功吗,我不会', '组装标题质量受限于广告主自提物料的片段质量,且表达丰富度有限', ] m = TextAugment(sentence_list=docs) a = docs[0] print(a) b = m.augment(a, aug_ops='random-0.2') print('random-0.2:', b) b = m.augment(a, aug_ops='insert-0.2') print('insert-0.2:', b) b = m.augment(a, aug_ops='delete-0.2') print('delete-0.2:', b) b = m.augment(a, aug_ops='tfidf-0.2') print('tfidf-0.2:', b) b = m.augment(a, aug_ops='mix-0.2') print('mix-0.2:', b) ``` output: ```bash 主要研究机器学习、深度学习、计算机视觉、智能对话系统相关内容 random-0.2: ('主要陪陪机器学习、深度学习主要计算机视觉、智能对话系统受限于内容', [('研究', '陪陪', 2, 4), ('、', '主要', 13, 15), ('相关', '受限于', 27, 30)]) insert-0.2: ('主要研究机器机器学习学习、深度深度学习、计算机视觉、智能对话系统相关内容', [('机器', '机器机器', 4, 8), ('学习', '学习学习', 8, 12), ('深度', '深度深度', 13, 17)]) delete-0.2: ('主要研究机器学习、深度学习、计算机视觉、对话系统相关内容', [('智能', '', 20, 20)]) tfidf-0.2: ('一是研究机器学习、深度学习、计算机听觉、智能交谈系统密切相关内容', [('主要', '一是', 0, 2), ('视觉', '听觉', 17, 19), ('对话', '交谈', 22, 24), ('相关', '密切相关', 26, 30)]) mix-0.2: ('主要研究机器学习、深度学、计算机听觉、智能对话软件系统相关内容', [('学习', '学', 11, 12), ('视觉', '听觉', 16, 18), ('系统', '软件系统', 23, 27)]) ```

TGLS 模型(无监督相似文本生成模型)

无监督的中文电商评论生成:从电商评论中提取用户表达观点的短句并进行组合来生成仿真评论。

example: examples/unsup_generation/unsup_generation_demo.py

show code example and result ```python import os import sys sys.path.append('..') from textgen.unsup_generation import TglsModel, load_list pwd_path = os.path.abspath(os.path.dirname(__file__)) samples = load_list(os.path.join(pwd_path, './data/ecommerce_comments.txt')) docs_text = [ ["挺好的,速度很快,也很实惠,不知效果如何", "产品没得说,买了以后就降价,心情不美丽。", "刚收到,包装很完整,不错", "发货速度很快,物流也不错,同一时间买的两个东东,一个先到一个还在路上。这个水水很喜欢,不过盖子真的开了。盖不牢了现在。", "包装的很好,是正品", "被种草兰蔻粉水三百元一大瓶囤货,希望是正品好用,收到的时候用保鲜膜包裹得严严实实,只敢买考拉自营的护肤品", ], ['很温和,清洗的也很干净,不油腻,很不错,会考虑回购,第一次考拉买护肤品,满意', '这款卸妆油我会无限回购的。即使我是油痘皮,也不会闷痘,同时在脸部按摩时,还能解决白头的脂肪粒的问题。用清水洗完脸后,非常的清爽。', '自从用了fancl之后就不用其他卸妆了,卸的舒服又干净', '买贵了,大润发才卖79。9。', ], samples ] m = TglsModel(docs_text) r = m.generate(samples[:500]) print('size:', len(r)) for review in r: print('\t' + review) ``` output: [美迪惠尔 N.M.F针剂水库保湿面膜](https://goods.kaola.com/product/2227311.html)有如下的20句评论,其中有10句是真实用户评论,10句是生成的评论,能看出来么?😂 ``` 还不错还不错还不错还不错。 东西到了,不知道好不好用。试用过后再来评价。到时看网评都还可以。 哺乳期唯一使用的护肤品,每天都是素颜,脸面全靠面膜吊着😄补水💦不粘腻一如既往的支持,喜欢💕 搞活动时买的面膜,不知道这个面膜是真是假敷在脸上面膜纸都有小水泡鼓起来。 很不错,非常补水,用过的都知道,性价比之王,好用又不贵,正品,用着放心,物流也很快。 面膜非常好用哦。面膜薄薄的。好像是蚕丝面膜啊。精华很多呢。敷在脸上很舒服。感觉挺保湿的,味道也挺好闻的。就是里面只有单纯的面膜直接敷脸上有点不好弄,哈哈哈 还可以保湿效果不错水润润的每天贴一片脸也不干了用完了在买点,不错还会继续回购的。 快递很快,东西很赞!想要得点考拉豆不容易,还要三十个字。时间宝贵,废话不说!用过了就知道了 挺好用的,朋友推荐来的 挺好用的,淡淡的,虽然不是很浓精华的感觉,但是效果也蛮好的。划算 不得不说美迪惠尔的面膜是我用过的最好的面膜之一😎补水效果非常好,没想到这么便宜的价格竟真的能买到真品。 保湿效果挺好的,面膜很好用。 期待好的产品。 一打开包装里面的精华刚刚好,用了补水补水效果不错,物流非常快。 皮肤很光滑😇比上去速度快三天就到了。 前两天皮肤干燥连续敷了两个晚上感觉还不错😂补水效果明显!可想而知精华液又多充足😍敷上以后凉凉的很舒服。 补水效果一般吧~但是我用的韩国背回来的面膜纸不算薄,希望好用会回购的,敷上脸感觉比较清爽~价格还不便宜。 希望好用,面膜用过了很好用,皮肤水嫩光滑白皙,补水不错,价格也合适。 就是精华液太少了,保湿效果不错。 面膜的补水效果非常好,保湿效果确实很赞,这个面膜相对于胶原蛋白和美白的那两款的面膜纸要厚一些,看着价格合适。 ``` 前10句是真实用户评论,后10句是生成的。

📚 Dataset

SFT datasets

Reward Model datasets

✅ Todo

  1. [x] add multiple rounds of dialogue data fine-tuning method
  2. [x] add reward model finetuning, go to shibing624/MeidcalGPT
  3. [x] add rl finetuning, go to shibing624/MeidcalGPT
  4. [x] add medical reward dataset
  5. [x] add llama in4 training, go to shibing624/MeidcalGPT
  6. [ ] add all training and predict demo in colab

☎️ Contact

😇 Citation

如果你在研究中使用了textgen,请按如下格式引用:

@misc{textgen,
  title={textgen: Text Generation Tool},
  author={Ming Xu},
  year={2021},
  howpublished={\url{https://github.com/shibing624/textgen}},
}

🤗 License

This repository is licensed under The Apache License 2.0.

Please follow the Model Card to use the LLaMA model.

Please follow the RAIL License to use the BLOOM & BLOOMZ model.

😍 Contribute

项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:

之后即可提交PR。

💕 Acknowledgements

Thanks for their great work!