A python package for use Textboxes : Image Text Detection Model
implemented by tensorflow, cv2
Textboxes Paper Review in Korean (My Blog) : shinjayne.github.io/textboxes
shintb
: useable textboxes python package (Source codes are in here)
svt1
: Street view Text dataset. can use with shintb.svt_data_loader.SVTDataLoader
when training Textboxes model
config.py
: (NECESSARY) configuration of model building and training with shinTB
main.py
: simple example useage of shinTB
package
Clone this repository to your local.
You will use shintb
python package and config.py
for building and training your own Textboxes model.
svt1
gives us training / test data.
Open new python file.
Import config.config
and shintb
.
from config import config
from shintb import graph_drawer, default_box_control, svt_data_loader, runner
Initialize GraphDrawer
,DefaultBoxControl
,SVTDataLoader
instance.
graphdrawer = graph_drawer.GraphDrawer(config)
dataloader = svt_data_loader.SVTDataLoader('./svt1/train.xml', './svt1/test.xml')
dbcontrol = default_box_control.DefaultBoxControl(config, graphdrawer)
GraphDrawer
instance contains a tensorflow graph of Textboxes.
DefaultboxControl
instance contains methods and attributes which is related to default box.
SVTDataLoader
instance loads data from svt1
.
Initialize Runner
instance.
runner = runner.Runner(config, graphdrawer, dataloader, dbcontrol)
Runner
uses GraphDrawer
,DefaultBoxControl
,SVTDataLoader
instance.
If you want to train your Textboxes model, use Runner.train()
. Every 1000 step, shintb
will save ckpt file in the directory you set in config.py
.
runner.train()
If you want to validate/test your model, use Runner.test()
runner.test()
After training, if you want to detect texts from one image use Runner.image()
.
runner.image(<your_image_directory>)