shivammehta25 / Neural-HMM

Neural HMMs are all you need (for high-quality attention-free TTS)
MIT License
151 stars 23 forks source link
deep-learning hidden-markov-model machine-learning neural-network pytorch pytorch-lightning speech-synthesis text-to-speech

Neural HMMs are all you need (for high-quality attention-free TTS)

Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter

This is the official code repository for the paper "Neural HMMs are all you need (for high-quality attention-free TTS)". For audio examples, visit our demo page. pre-trained model (female) and pre-trained model (male) are also available.

Synthesising from Neural-HMM

Setup and training using LJ Speech

  1. Download and extract the LJ Speech dataset. Place it in the data folder such that the directory becomes data/LJSpeech-1.1. Otherwise update the filelists in data/filelists accordingly.
  2. Clone this repository git clone https://github.com/shivammehta25/Neural-HMM.git
    • If using single GPU checkout the branch gradient_checkpointing it will help to fit bigger batch size during training.
    • Use git clone --single-branch -b gradient_checkpointing https://github.com/shivammehta25/Neural-HMM.git for that.
  3. Initalise the submodules git submodule init; git submodule update
  4. Make sure you have docker installed and running.
    • It is recommended to use Docker (it manages the CUDA runtime libraries and Python dependencies itself specified in Dockerfile)
    • Alternatively, If you do not intend to use Docker, you can use pip to install the dependencies using pip install -r requirements.txt
  5. Run bash start.sh and it will install all the dependencies and run the container.
  6. Check src/hparams.py for hyperparameters and set GPUs.
    1. For multi-GPU training, set GPUs to [0, 1 ..]
    2. For CPU training (not recommended), set GPUs to an empty list []
    3. Check the location of transcriptions
  7. Once your filelists and hparams are updated run python generate_data_properties.py to generate data_parameters.pt for your dataset (the default data_parameters.pt is available for LJSpeech in the repository).
  8. Run python train.py to train the model.
    1. Checkpoints will be saved in the hparams.checkpoint_dir.
    2. Tensorboard logs will be saved in the hparams.tensorboard_log_dir.
  9. To resume training, run python train.py -c <CHECKPOINT_PATH>

Synthesis

  1. Download our pre-trained LJ Speech model. (This is the exact same model as system NH2 in the paper, but with training continued until reaching 200k updates total.)
  2. Download HiFi gan pretrained HiFiGAN model.
    • We recommend using fine tuned on Tacotron2 if you cannot finetune on NeuralHMM.
  3. Run jupyter notebook and open synthesis.ipynb.

Miscellaneous

Mixed-precision training or full-precision training

Known issues/warnings

PyTorch dataloader

Torchmetric error on RTX 3090

Support

If you have any questions or comments, please open an issue on our GitHub repository.

Citation information

If you use or build on our method or code for your research, please cite our paper:

@inproceedings{mehta2022neural,
  title={Neural {HMM}s are all you need (for high-quality attention-free {TTS})},
  author={Mehta, Shivam and Sz{\'e}kely, {\'E}va and Beskow, Jonas and Henter, Gustav Eje},
  booktitle={Proc. ICASSP},
  year={2022}
}

Acknowledgements

The code implementation is based on Nvidia's implementation of Tacotron 2 and uses PyTorch Lightning for boilerplate-free code.