shjo-april / PuzzleCAM

[ICIP 2021] Puzzle-CAM: Improved localization via matching partial and full features.
174 stars 46 forks source link
convolutional-neural-networks deeplearning semantic-segmentation weakly-supervised-learning weakly-supervised-segmentation

PWC PWC

Puzzle-CAM

The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Citation

Abstract

Weakly-supervised semantic segmentation (WSSS) is introduced to narrow the gap for semantic segmentation performance from pixel-level supervision to image-level supervision. Most advanced approaches are based on class activation maps (CAMs) to generate pseudo-labels to train the segmentation network. The main limitation of WSSS is that the process of generating pseudo-labels from CAMs which use an image classifier is mainly focused on the most discriminative parts of the objects. To address this issue, we propose Puzzle-CAM, a process minimizes the differences between the features from separate patches and the whole image. Our method consists of a puzzle module (PM) and two regularization terms to discover the most integrated region of in an object. Without requiring extra parameters, Puzzle-CAM can activate the overall region of an object using image-level supervision. In experiments, Puzzle-CAM outperformed previous state-of-the-art methods using the same labels for supervision on the PASCAL VOC 2012 test dataset.

Overview

Overall architecture


Prerequisite

Usage

Install python dependencies

python3 -m pip install -r requirements.txt

Download PASCAL VOC 2012 devkit

Follow instructions in http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit

1. Train an image classifier for generating CAMs

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_classification_with_puzzle.py --architecture resnest101 --re_loss_option masking --re_loss L1_Loss --alpha_schedule 0.50 --alpha 4.00 --tag ResNeSt101@Puzzle@optimal --data_dir $your_dir

2. Apply Random Walk (RW) to refine the generated CAMs

2.1. Make affinity labels to train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 inference_classification.py --architecture resnest101 --tag ResNeSt101@Puzzle@optimal --domain train_aug --data_dir $your_dir
python3 make_affinity_labels.py --experiment_name ResNeSt101@Puzzle@optimal@train@scale=0.5,1.0,1.5,2.0 --domain train_aug --fg_threshold 0.40 --bg_threshold 0.10 --data_dir $your_dir

2.2. Train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 train_affinitynet.py --architecture resnest101 --tag AffinityNet@ResNeSt-101@Puzzle --label_name ResNeSt101@Puzzle@optimal@train@scale=0.5,1.0,1.5,2.0@aff_fg=0.40_bg=0.10 --data_dir $your_dir

3. Train the segmentation model using the pseudo-labels

3.1. Make segmentation labels to train segmentation model.

CUDA_VISIBLE_DEVICES=0 python3 inference_rw.py --architecture resnest101 --model_name AffinityNet@ResNeSt-101@Puzzle --cam_dir ResNeSt101@Puzzle@optimal@train@scale=0.5,1.0,1.5,2.0 --domain train_aug --data_dir $your_dir
python3 make_pseudo_labels.py --experiment_name AffinityNet@ResNeSt-101@Puzzle@train@beta=10@exp_times=8@rw --domain train_aug --threshold 0.35 --crf_iteration 1 --data_dir $your_dir

3.2. Train segmentation model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag DeepLabv3+@ResNeSt-101@Fix@GN --label_name AffinityNet@ResNeSt-101@Puzzle@train@beta=10@exp_times=8@rw@crf=1 --data_dir $your_dir

4. Evaluate the models

CUDA_VISIBLE_DEVICES=0 python3 inference_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag DeepLabv3+@ResNeSt-101@Fix@GN --scale 0.5,1.0,1.5,2.0 --iteration 10

python3 evaluate.py --experiment_name DeepLabv3+@ResNeSt-101@Fix@GN@val@scale=0.5,1.0,1.5,2.0@iteration=10 --domain val --data_dir $your_dir/SegmentationClass

5. Results

Qualitative segmentation results on the PASCAL VOC 2012 validation set. Top: original images. Middle: ground truth. Bottom: prediction of the segmentation model trained using the pseudo-labels from Puzzle-CAM. Overall architecture

Methods background aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor mIoU
Puzzle-CAM with ResNeSt-101 88.9 87.1 38.7 89.2 55.8 72.8 89.8 78.9 91.3 26.8 84.4 40.3 88.9 81.9 83.1 34.0 60.1 83.6 47.3 59.6 38.8 67.7
Puzzle-CAM with ResNeSt-269 91.1 87.2 37.3 86.8 61.4 71.2 92.2 86.2 91.8 28.6 85.0 64.1 91.8 82.0 82.5 70.7 69.4 87.7 45.4 67.0 37.7 72.2

6. Provide the trained weights and training logs

Model val test
DeepLabv3+ ResNeSt-101 val.tgz test.tgz
DeepLabv3+ ResNeSt-269 val.tgz test.tgz


For any issues, please contact Sanghyun Jo, shjo.april@gynetworks.com