Network-based anomaly detection has been regarded as a critical mission to find anomalous behavior on networks. Many researchers have focused on how to detect network threats intelligently and efficiently. In recent years, Software-defined networking has emerged as a new opportunity to implement network anomaly functions, since has lots of advantages such as a centralized network management, programmable network environment, and so forth. With its advantages, security experts have focused on implementing anomaly detection functions which work on SDN networks. Despite its popularity, designing and implementing still has unsolved challenges, such as a lack of network features, a scalability issue, and a hardness of deployment.
This project represents one of many ongoing research efforts that seek to develop new SDN-based network anomaly detection services. However, here our focus in on a development framework that scales to large networks that employ multiple controller instances across a distributed control plane. We introduce the Athena [1], which exports a well-structured development interface to overcome existing challenges. It allows network operators implement desired anomaly detection applications with minimum programming efforts and complete transparency of an underline infrastructure. The prototype implementation of the Athena framework hosted on the Open Network Operating System (ONOS) SDN controller, upon which we have isolated 125 network features for use by Athena applications. Thus, we provide well-structured APIs including core functions to implement anomaly detection applications.
We have been evolving the Athena framework to support more advanced features such as a high-level security intent enforcement mechanism, an automatic threat reaction mechanism, a network-wide disaster simulation and detection.
[1] Seunghyeon Lee, Jinwoo Kim, Seungwon Shin, Phillip Porras, Vinod Yegneswaran, “Athena: A Framework for Scalable Anomaly Detection in Software-Defined Networks”, The 47th IEEE/IFIP International Conference on Dependable Systems and Networks, (to appear), Denver, CO, USA, June, 2017
Athena installation procedure is based on ONOS, which is built upon maven build system, thus the mvn command is used to build both Athena and ONOS systems.
$ git clone [address of github]
$ cd <Athena>/tools/dev/bin/
$ ./onos-setup-ubuntu-devenv
$ cd <Athena>
$ source <Athena>/athena-tool/dev/bash_profile
$ mvn clean install
Basically, we support both Single Mode and Distributed Mode for collecting Athena features and performing a network anomaly detection task.
In the Single Mode, we assume that all instances (a SDN controller, a DB instance, and a computing instance) are running in a local machine.
$ cd <Athena>/athena-tool/dev/
$ ./athena-setup-single
$ vi <Athena>/athena-tool/config/athena-config-env-single
# An example of the Athena configuration file on a single environment
...
# the mode for an Athena environment e.g., SINGLE or DISTRIBUTED
export MODE="SINGLE"
# the addresses of ONOS instances
export OC1="127.0.0.1"
# the addresses of MongoDB cluster
export MD1="127.0.0.1"
# the addresses of Spark cluster
export SP1="127.0.0.1"
# the path of Athena
export ATHENA_ROOT=~/athena-1.6
...
$ source ./athena-config-env-single
$ onos-karaf clean
In the Distributed Mode, Athena is hosted on three ONOS controllers, three DB instances, and three computing instances.
$ cd <Athena>/athena-tool/dev/
$ ./athena-setup-lxc
# LXC will creates nine containers and automatically assigns IP addresses.
$ vi <Athena>/athena-tool/config/athena-config-env-distributed
# An example of the Athena configuraiton file
...
# the mode for an Athena environment e.g. SINGLE or DISTRIBUTED
export MODE="DISTRIBUTED"
# the addresses of ONOS instances
export OC1="10.0.3.22"
export OC2="10.0.3.158"
export OC3="10.0.3.108"
# the addressees of the MongoDB containers
export MD1="10.0.3.112"
export MD2="10.0.3.176"
export MD3="10.0.3.115"
# the addressees of the Spark containers
export SP1="10.0.3.226"
export SP2="10.0.3.63"
export SP3="10.0.3.60"
# the path of Athena
export ATHENA_ROOT=~/athena-1.6
...
$ source ./athena-config-env-distributed
# password : ubuntu
$ onos-push-keys $OC1
ubuntu@10.0.3.22's password: ubuntu
$ onos-push-keys $OC2
ubuntu@10.0.3.158's password: ubuntu
$ onos-push-keys $OC3
ubuntu@10.0.3.108's password: ubuntu
$ onos-push-keys $MD1
ubuntu@10.0.3.112's password: ubuntu
$ onos-push-keys $MD2
ubuntu@10.0.3.176's password: ubuntu
$ onos-push-keys $MD3
ubuntu@10.0.3.115's password: ubuntu
$ onos-push-keys $SP1
ubuntu@10.0.3.226's password: ubuntu
$ onos-push-keys $SP2
ubuntu@10.0.3.63's password: ubuntu
$ onos-push-keys $SP3
ubuntu@10.0.3.60's password: ubuntu
$ cd <Athena>/athena-tool/dev/
$ ./athena-setup-distributed
$ op && onos-group install
$ cd <Athena>/athena-tool/bin/
$ athena-run-db-cluster
$ athena-run-computing-cluster
ONOS> app activate org.onosproject.framework
ONOS> app activate org.onosproject.athenaproxy
$ cd <Athena>/athena-tester/bin
$ ./athena-run-realtime
...
source $ATHENA_ROOT/athena-tool/config/athena-config-env #athena-config-env-single or -distributed for the single and distribute modes respectively.
...
$ cd <Athena>/athena-tester/bin
$ ./athena-run-ml-task
// Initialize DB and Computing cluster manager
DatabaseConnector databaseConnector = new DatabaseConnector();
MachineLearningManagerImpl machineLearningManager = new MachineLearningManagerImpl();
machineLearningManager.setMainClass("athena.user.application.Main"); // the name of main class
machineLearningManager.setArtifactId("athena-tester-1.6.0"); // the artifact id of your Athena application
machineLearningManager.setDatabaseConnector(databaseConnector);
// Get Athena features which satisfy the condition "MATCH_IPV4_SRC==10.0.0.1 AND MATCH_IP_PROTO==6"
FeatureConstraint featureConstraint = new FeatureConstraint(FeatureConstraintOperatorType.LOGICAL,
new FeatureConstraintOperator(FeatureConstraintOperator.LOGICAL_AND));
FeatureConstraint featureConstraint2 = new FeatureConstraint(FeatureConstraintType.INDEX,
FeatureConstraintOperatorType.COMPARABLE,
new FeatureConstraintOperator(FeatureConstraintOperator.COMPARISON_EQ),
new AthenaIndexField(AthenaIndexField.MATCH_IPV4_SRC),
new TargetAthenaValue(AthenaValueGenerator.parseIPv4ToAthenaValue("10.0.0.1")));
FeatureConstraint featureConstraint3 = new FeatureConstraint(FeatureConstraintType.INDEX,
FeatureConstraintOperatorType.COMPARABLE,
new FeatureConstraintOperator(FeatureConstraintOperator.COMPARISON_EQ),
new AthenaIndexField(AthenaIndexField.MATCH_IP_PROTO),
new TargetAthenaValue(AthenaValueGenerator.generateAthenaValue("6")));
featureConstraint.setLocation("model"); // the name of MongoDB collection which contains the train data set
featureConstraint.appenValue(new TargetAthenaValue(fc2));
featureConstraint.appenValue(new TargetAthenaValue(fc3));
// Configure Data Pre-processing; set normalization for ML feature scaling and add weight to FLOW_STATS_PAIR_FLOW_RATIO
AthenaMLFeatureConfiguration athenaMLFeatureConfiguration = new AthenaMLFeatureConfiguration();
athenaMLFeatureConfiguration.setNormalization(true);
athenaMLFeatureConfiguration.addWeight(new AthenaFeatureField(AthenaFeatureField.FLOW_STATS_PAIR_FLOW_RATIO), 1000);
// Specify which Athena features are used for learning
athenaMLFeatureConfiguration.addTargetFeatures(new AthenaFeatureField(AthenaFeatureField.FLOW_STATS_BYTE_COUNT));
athenaMLFeatureConfiguration.addTargetFeatures(new AthenaFeatureField(AthenaFeatureField.FLOW_STATS_PACKET_COUNT));
athenaMLFeatureConfiguration.addTargetFeatures(new AthenaFeatureField(AthenaFeatureField.FLOW_STATS_PAIR_FLOW_RATIO));
athenaMLFeatureConfiguration.addTargetFeatures(new AthenaFeatureField(AthenaFeatureField.FLOW_STATS_DURATION_SEC));
// K-Means clustering (k=8, iteration=20, runs=10)
KMeansDetectionAlgorithm kMeansDetectionAlgorithm = new KMeansDetectionAlgorithm();
kMeansDetectionAlgorithm.setK(8);
kMeansDetectionAlgorithm.setMaxIterations(20);
kMeansDetectionAlgorithm.setRuns(10);
// (Optional) Set labeling for if the ML algorithm is classification
Marking marking = new Marking();
marking.setSrcMaskMarking(0x000000ff, 0x00000065);
// Select Athena index fields; below seven fields are used for identifying unique Athena features
Indexing indexing = new Indexing();
indexing.addIndexingElements(new AthenaIndexField(AthenaIndexField.MATCH_IP_PROTO));
indexing.addIndexingElements(new AthenaIndexField(AthenaIndexField.MATCH_TCP_SRC));
indexing.addIndexingElements(new AthenaIndexField(AthenaIndexField.MATCH_TCP_DST));
indexing.addIndexingElements(new AthenaIndexField(AthenaIndexField.MATCH_UDP_SRC));
indexing.addIndexingElements(new AthenaIndexField(AthenaIndexField.MATCH_UDP_DST));
indexing.addIndexingElements(new AthenaIndexField(AthenaIndexField.MATCH_IPV4_SRC));
indexing.addIndexingElements(new AthenaIndexField(AthenaIndexField.MATCH_IPV4_DST));
// Train the data set and generate a model
KMeansDetectionModel kMeansDetectionModel = (KMeansDetectionModel) machineLearningManager.
generateAthenaDetectionModel(featureConstraint, athenaMLFeatureConfiguration, kMeansDetectionAlgorithm, indexing, marking);
// Save the generated model
machineLearningManager.saveDetectionModel(kMeansDetectionModel, "./AthenaModel.KMeansDetectionModel");
// Show the result
kMeansDetectionModel.getSummary().printSummary();
// Load the trained model
KMeansDetectionModel kMeansDetectionModel =
(KMeansDetectionModel) machineLearningManager.loadDetectionModel("./AthenaModel.KMeansDetectionModel"); // the name of the saved detection model
featureConstraint.setLocation("target"); // the name of MongoDB collection which contains a target data set
// Validate the target data set with the model
KmeansValidationSummary kmeansValidationSummary = (KmeansValidationSummary) machineLearningManager.
validateAthenaFeatures(featureConstraint, athenaMLFeatureConfiguration, kMeansDetectionModel, indexing, marking);
// Show the result
kmeansValidationSummary.printResults();
Classification | Feature Name | Category | Formula | ||
---|---|---|---|---|---|
Protocol Centric |
Combination | Stateful (+Variation) |
|||
ERROR | ERRTYPE | ✔ | |||
ERRCODE | ✔ | ||||
FLOW _REMOVED |
DURATION_SECOND | ✔ | |||
DURATION_N_SECOND | ✔ | ||||
IDLE_TIMEOUT | ✔ | ||||
HARD_TIEMOUT | ✔ | ||||
PACKET_COUNT | ✔ | ||||
BYTE_COUNT | ✔ | ||||
PACKET_PER_DURATION | ✔ | PACKET_COUNT / DURATION_N_SEC | |||
BYTE_PER_DURATION | ✔ | BYTE_COUNT / DURATION_N_SEC | |||
PACKET_IN | TOTAL_LEN | ✔ | |||
REASON | ✔ | ||||
PAYLOAD_MATCHE _FIELDS |
✔ | ||||
PORT_STATUS | REASON | ✔ | |||
FLOW_STATS | DURATION_SEC | ✔ | |||
DURATION_N_SEC | ✔ | ||||
PRIORITY | ✔ | ||||
IDLE_TIMEOUT | ✔ | ||||
HARD_TIMEOUT | ✔ | ||||
PACKET_COUNT | ✔ | ✔ | |||
BYTE_COUNT | ✔ | ✔ | |||
BYTE_PER_PACKET | ✔ | BYTE_COUNT / PACKET_COUNT | |||
PACKET_PER_DURATION | ✔ | PACKET_COUNT / DURATION_SEC | |||
BYTE_PER_DURATION | ✔ | BYTE_COUNT / DURATION_SEC | |||
ACTION_OUTPUT | ✔ | ||||
ACTION_OUTPUT_PORT | ✔ | ||||
ACTION_DROP | ✔ | ||||
PAIR_FLOW | ✔ | ✔ | if bidirectional connection | ||
TOTAL_FLOWS | ✔ | ✔ | Σ flows | ||
PAIR_FLOW_RATIO | ✔ | ✔ | Σ PAIR_FLOWS / TOTAL_FLOWS | ||
PORT_STATS | RX_PACKETS | ✔ | ✔ | ||
TX_PACKETS | ✔ | ✔ | |||
RX_BYTES | ✔ | ✔ | |||
TX_BYTES | ✔ | ✔ | |||
RX_DROPPED | ✔ | ✔ | |||
TX_DROPPED | ✔ | ✔ | |||
RX_ERRORS | ✔ | ✔ | |||
TX_ERRORS | ✔ | ✔ | |||
RX_FRAME_ERROR | ✔ | ✔ | |||
RX_OVER_ERROR | ✔ | ✔ | |||
RX_CRC_ERROR | ✔ | ✔ | |||
COLLISIONS | ✔ | ✔ | |||
RX_BYTES_PER_PACKET | ✔ | ✔ | RX_BYTE / RX_PACKET | ||
TX_BYTES_PER_PACKET | ✔ | ✔ | TX_BYTE / TX_PACKET | ||
RX_DROPPED_PER_PACKET | ✔ | ✔ | RX_DROPPED / RX_PACKET | ||
TX_DROPPED_PER_PACKET | ✔ | ✔ | TX_DROPPED / TX_PACKET | ||
RX_ERROR_PER_PACKET | ✔ | ✔ | RX_ERROR / RX_PACKET | ||
TX_ERROR_PER_PACKET | ✔ | ✔ | TX_ERROR / TX_PACKET | ||
RX_FRAME_ERROR _PER_PACKET |
✔ | ✔ | RX_FRAME_ERROR / RX_PACKET | ||
RX_OVER_ERROR _PER_PACKET |
✔ | ✔ | RX_OVER_ERROR / RX_PACKET | ||
RX_CRC_ERROR _PER_PACKET |
✔ | ✔ | RX_CRC_ERROR / RX_PACKET | ||
AGGREGATE _STATS |
PACKET_COUNT | ✔ | ✔ | ||
BYTE_COUNT | ✔ | ✔ | |||
FLOW_COUNT | ✔ | ✔ | |||
BYTE_PER_PACKET | ✔ | ✔ | BYTE_COUNT / PACKET_COUNT | ||
QUEUE_STATS | TX_BYTES | ✔ | ✔ | ||
TX_PACKETS | ✔ | ✔ | |||
TX_ERROS | ✔ | ✔ | |||
TABLE_STATS | MAX_ENTRIES | ✔ | ✔ | ||
ACTIVE_COUNT | ✔ | ✔ | |||
LOOKUP_COUNT | ✔ | ✔ | |||
MATCHED_COUNT | ✔ | ✔ | |||
MATCHED_PER_LOOKUP | ✔ | ✔ | MATCHED_COUNT / LOOKUP_COUNT | ||
ACTIVE_PER_MAX | ✔ | ✔ | ACTIVE_COUNT / MAX_ENTRIES | ||
LOOKUP_PER_ACTIVE | ✔ | ✔ | LOOKUP_COUNT / ACTIVE_COUNT | ||
MATCHED_PER_ACTIVE | ✔ | ✔ | MATCHED_COUNT / ACTIVE_COUNT |
onos> athena-query ?
athena-query FeatureComaratorValue Ops:Pramgs
Timestamp format: yyyy-MM-dd-HH:mm
Available advanced options are :
L - Limit features (param1 = number of entires
S - Sorting with a certain feature (param1 = name of feature
A - Sorting entires with a certain condition by an index
ex) athena-query FSSdurationNSec>10,timestamp>2016-01-03-11:45,FSSactionOutput=true,AappName=org.onosproject.fwd L:100,S:FSSbyteCount,A:Feature1:Feature2
Visit http://sdnsecurity.org or http://nss.kaist.ac.kr.