shuaijiang / Whisper-Finetune

Fine-tune the Whisper speech recognition model to support training without timestamp data, training with timestamp data, and training without speech data. Accelerate inference and support Web deployment, Windows desktop deployment, and Android deployment
Apache License 2.0
187 stars 10 forks source link

微调Whisper语音识别模型和加速推理

简体中文 | English

python version GitHub forks GitHub Repo stars GitHub 支持系统

前言

OpenAI在开源了号称其英文语音辨识能力已达到人类水准的Whisper项目,且它亦支持其它98种语言的自动语音辨识。Whisper所提供的自动语音识与翻译任务,它们能将各种语言的语音变成文本,也能将这些文本翻译成英文。本项目主要的目的是为了对Whisper模型使用Lora进行微调,支持无时间戳数据训练,有时间戳数据训练、无语音数据训练。目前开源了好几个模型,具体可以在openai查看,下面列出了常用的几个模型。另外项目最后还支持CTranslate2加速推理和GGML加速推理,提示一下,加速推理支持直接使用Whisper原模型转换,并不一定需要微调。支持Windows桌面应用,Android应用和服务器部署。

请先点 :star:

🔄 最新更新

支持模型

使用环境:

目录

项目主要程序介绍

  1. aishell.py:制作AIShell训练数据。
  2. finetune.py:PEFT方式微调模型。
  3. finetune_all.py:全参数微调模型。
  4. merge_lora.py:合并Whisper和Lora的模型。
  5. evaluation.py:评估使用微调后的模型或者Whisper原模型。
  6. infer_tfs.py:使用transformers直接调用微调后的模型或者Whisper原模型预测,只适合推理短音频。
  7. infer_ct2.py:使用转换为CTranslate2的模型预测,主要参考这个程序用法。
  8. infer_gui.py:有GUI界面操作,使用转换为CTranslate2的模型预测。
  9. infer_server.py:使用转换为CTranslate2的模型部署到服务器端,提供给客户端调用。
  10. convert-ggml.py:转换模型为GGML格式模型,给Android应用或者Windows应用使用。
  11. AndroidDemo:该目录存放的是部署模型到Android的源码。
  12. WhisperDesktop:该目录存放的是Windows桌面应用的程序。

模型说明

Model Parameters(M) Base Model Data (Re)Sample Rate Train Datasets Fine-tuning (full or peft)
Belle-whisper-large-v2-zh 1550 whisper-large-v2 16KHz AISHELL-1 AISHELL-2 WenetSpeech HKUST full fine-tuning
Belle-distil-whisper-large-v2-zh 756 distil-whisper-large-v2 16KHz AISHELL-1 AISHELL-2 WenetSpeech HKUST full fine-tuning
Belle-whisper-large-v3-zh 1550 whisper-large-v3 16KHz AISHELL-1 AISHELL-2 WenetSpeech HKUST full fine-tuning
Belle-whisper-large-v3-zh-punct 1550 Belle-whisper-large-v3-zh 16KHz AISHELL-1 AISHELL-2 WenetSpeech HKUST lora fine-tuning
Belle-whisper-large-v3-turbo-zh 809 Belle-whisper-large-v3-turbo 16KHz AISHELL-1 AISHELL-2 WenetSpeech HKUST full fine-tuning

模型效果 CER(%) ↓

Model Language Tag aishell_1 test aishell_2 test wenetspeech test_net wenetspeech test_meeting HKUST_dev Model Link
whisper-large-v3-turbo Chinese 8.639 6.014 13.507 20.313 37.324 HF
Belle-whisper-large-v3-turbo-zh Chinese 3.070 4.114 10.230 13.357 18.944 HF
whisper-large-v2 Chinese 8.818 6.183 12.343 26.413 31.917 HF
Belle-whisper-large-v2-zh Chinese 2.549 3.746 8.503 14.598 16.289 HF
whisper-large-v3 Chinese 8.085 5.475 11.72 20.15 28.597 HF
Belle-whisper-large-v3-zh Chinese 2.781 3.786 8.865 11.246 16.440 HF
Belle-whisper-large-v3-zh-punct Chinese 2.945 3.808 8.998 10.973 17.196 HF
distil-whisper-large-v2 Chinese - - - - - HF
Belle-distilwhisper-large-v2-zh Chinese 5.958 6.477 12.786 17.039 20.771 HF

重要说明:

  1. 在评估的时候移除模型输出的标点符号,并把繁体中文转成简体中文。
  2. aishell_1_test为AIShell-1的测试集,aishell_2_test为AIShell-2的测试集,test_nettest_meeting为WenetSpeech的测试集。
  3. distil-whisper-large-v2基于英文数据蒸馏,只能输出英文。 It's important to note that the original distil-whisper-large-v2 cannot transcribe Chinese (it only outputs English).
  4. Belle-whisper-large-v3-zh 相比Belle-whisper-large-v2-zh,在复杂场景有明显优势,在wenetspeech meeting上取得更好效果,有22%的相对提升。
  5. Belle-whisper-large-v3-zh-punct 具备标点符号能力,标点符号来自punc_ct-transformer_cn-en-common-vocab471067-large。此外,复杂场景效果进一步提升。
  6. Belle-whisper-large-v3-turbo-zh 相比whisper-large-v3-turbo有24-64%的相对提升,相比Belle-whisper-large-v3-zh-punct有轻微的精度下降,但是有7-8倍的速度提升,在受限算力下有显著应用价值。

安装环境

  1. 以下是使用Anaconda安装Pytorch环境,如果已经安装过了,请跳过。

    conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
  2. 以下是使用Docker镜像,拉取一个Pytorch环境的镜像。

    sudo docker pull pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel

然后进入到镜像中,同时将当前路径挂载到容器的/workspace目录下。

sudo nvidia-docker run --name pytorch -it -v $PWD:/workspace pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel /bin/bash
python -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

准备数据

训练的数据集如下,是一个jsonlines的数据列表,也就是每一行都是一个JSON数据,数据格式如下。本项目提供了一个制作AIShell数据集的程序aishell.py,执行这个程序可以自动下载并生成如下列格式的训练集和测试集,注意: 这个程序可以通过指定AIShell的压缩文件来跳过下载过程的,如果直接下载会非常慢,可以使用一些如迅雷等下载器下载该数据集,然后通过参数--filepath指定下载的压缩文件路径,如/home/test/data_aishell.tgz

小提示:

  1. 如果不使用时间戳训练,可以不包含sentences字段的数据。
  2. 如果只有一种语言的数据,可以不包含language字段数据。
  3. 如果训练空语音数据,sentences字段为[]sentence字段为""language字段可以不存在。
  4. 数据可以不包含标点符号,但微调的模型会损失添加符号能力。
{
   "audio": {
      "path": "dataset/0.wav"
   },
   "sentence": "近几年,不但我用书给女儿压岁,也劝说亲朋不要给女儿压岁钱,而改送压岁书。",
   "language": "Chinese",
   "sentences": [
      {
         "start": 0,
         "end": 1.4,
         "text": "近几年,"
      },
      {
         "start": 1.42,
         "end": 8.4,
         "text": "不但我用书给女儿压岁,也劝说亲朋不要给女儿压岁钱,而改送压岁书。"
      }
   ],
   "duration": 7.37
}

微调模型

准备好数据之后,就可以开始微调模型了。训练最重要的两个参数分别是,--base_model指定微调的Whisper模型,这个参数值需要在HuggingFace存在的,这个不需要提前下载,启动训练时可以自动下载,当然也可以提前下载,那么--base_model指定就是路径,同时--local_files_only设置为True。第二个--output_path是是训练时保存的Lora检查点路径,因为我们使用Lora来微调模型。如果想存足够的话,最好将--use_8bit设置为False,这样训练速度快很多。其他更多的参数请查看这个程序。

单卡训练

单卡训练命令如下,Windows系统可以不添加CUDA_VISIBLE_DEVICES参数。

CUDA_VISIBLE_DEVICES=0 python finetune.py --base_model=openai/whisper-tiny --output_dir=output/

多卡训练

多卡训练有两种方法,分别是torchrun和accelerate,开发者可以根据自己的习惯使用对应的方式。

  1. 使用torchrun启动多卡训练,命令如下,通过--nproc_per_node指定使用的显卡数量。

    torchrun --nproc_per_node=2 finetune.py --base_model=openai/whisper-tiny --output_dir=output/
  2. 使用accelerate启动多卡训练,如果是第一次使用accelerate,要配置训练参数,方式如下。

首先配置训练参数,过程是让开发者回答几个问题,基本都是默认就可以,但有几个参数需要看实际情况设置。

accelerate config

大概过程就是这样:

--------------------------------------------------------------------In which compute environment are you running?
This machine
--------------------------------------------------------------------Which type of machine are you using?
multi-GPU
How many different machines will you use (use more than 1 for multi-node training)? [1]:
Do you wish to optimize your script with torch dynamo?[yes/NO]:
Do you want to use DeepSpeed? [yes/NO]:
Do you want to use FullyShardedDataParallel? [yes/NO]:
Do you want to use Megatron-LM ? [yes/NO]: 
How many GPU(s) should be used for distributed training? [1]:2
What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:
--------------------------------------------------------------------Do you wish to use FP16 or BF16 (mixed precision)?
fp16
accelerate configuration saved at /home/test/.cache/huggingface/accelerate/default_config.yaml

配置完成之后,可以使用以下命令查看配置。

accelerate env

开始训练命令如下。

accelerate launch finetune.py --base_model=openai/whisper-tiny --output_dir=output/

输出日志如下:

{'loss': 0.9098, 'learning_rate': 0.000999046843662503, 'epoch': 0.01}                                                     
{'loss': 0.5898, 'learning_rate': 0.0009970611012927184, 'epoch': 0.01}                                                    
{'loss': 0.5583, 'learning_rate': 0.0009950753589229333, 'epoch': 0.02}                                                  
{'loss': 0.5469, 'learning_rate': 0.0009930896165531485, 'epoch': 0.02}                                          
{'loss': 0.5959, 'learning_rate': 0.0009911038741833634, 'epoch': 0.03}

合并模型

PEFT方式微调模型完成之后会有两个模型,第一个是Whisper基础模型,第二个是Lora模型,需要把这两个模型合并之后才能之后的操作。这个程序只需要传递两个参数,--lora_model指定的是训练结束后保存的Lora模型路径,其实就是检查点文件夹路径,第二个--output_dir是合并后模型的保存目录。

python merge_lora.py --lora_model=output/whisper-tiny/checkpoint-best/ --output_dir=models/

评估模型

执行以下程序进行评估模型,最重要的两个参数分别是。第一个--model_path指定的是合并后的模型路径,同时也支持直接使用Whisper原模型,例如直接指定openai/whisper-large-v2,第二个是--metric指定的是评估方法,例如有字错率cer和词错率wer提示: 没有微调的模型,可能输出带有标点符号,影响准确率。其他更多的参数请查看这个程序。

python evaluation.py --model_path=models/whisper-tiny-finetune --metric=cer

预测

执行以下程序进行语音识别,这个使用transformers直接调用微调后的模型或者Whisper原模型预测,只适合推理短音频,长语音还是参考infer_ct2.py的使用方式。第一个--audio_path参数指定的是要预测的音频路径。第二个--model_path指定的是合并后的模型路径,同时也支持直接使用Whisper原模型,例如直接指定openai/whisper-large-v2。其他更多的参数请查看这个程序。

python infer_tfs.py --audio_path=dataset/test.wav --model_path=models/whisper-tiny-finetune

加速预测

众所周知,直接使用Whisper模型推理是比较慢的,所以这里提供了一个加速的方式,主要是使用了CTranslate2进行加速,首先要转换模型,把合并后的模型转换为CTranslate2模型。如下命令,--model参数指定的是合并后的模型路径,同时也支持直接使用Whisper原模型,例如直接指定openai/whisper-large-v2--output_dir参数指定的是转换后的CTranslate2模型路径,--quantization参数指定的是量化模型大小,不希望量化模型的可以直接去掉这个参数。

ct2-transformers-converter --model models/whisper-tiny-finetune --output_dir models/whisper-tiny-finetune-ct2 --copy_files tokenizer.json --quantization float16

执行以下程序进行加速语音识别,--audio_path参数指定的是要预测的音频路径。--model_path指定的是转换后的CTranslate2模型。其他更多的参数请查看这个程序。

python infer_ct2.py --audio_path=dataset/test.wav --model_path=models/whisper-tiny-finetune-ct2

输出结果如下:

-----------  Configuration Arguments -----------
audio_path: dataset/test.wav
model_path: models/whisper-tiny-finetune-ct2
language: zh
use_gpu: True
use_int8: False
beam_size: 10
num_workers: 1
vad_filter: False
local_files_only: True
------------------------------------------------
[0.0 - 8.0]:近几年,不但我用书给女儿压碎,也全说亲朋不要给女儿压碎钱,而改送压碎书。

GUI界面预测

这里同样是使用了CTranslate2进行加速,转换模型方式看上面文档。--model_path指定的是转换后的CTranslate2模型。其他更多的参数请查看这个程序。

python infer_gui.py --model_path=models/whisper-tiny-finetune-ct2

启动后界面如下:

GUI界面

Web部署

Web部署同样是使用了CTranslate2进行加速,转换模型方式看上面文档。--host指定服务启动的地址,这里设置为0.0.0.0,即任何地址都可以访问。--port指定使用的端口号。--model_path指定的是转换后的CTranslate2模型。--num_workers指定是使用多少个线程并发推理,这在Web部署上很重要,当有多个并发访问是可以同时推理。其他更多的参数请查看这个程序。

python infer_server.py --host=0.0.0.0 --port=5000 --model_path=models/whisper-tiny-finetune-ct2 --num_workers=2

接口文档

目前提供两个接口,普通的识别接口/recognition和流式返回结果/recognition_stream,注意这个流式是指流式返回识别结果,同样是上传完整的音频,然后流式返回识别结果,这种方式针对长语音识别体验非常好。他们的文档接口是完全一致的,接口参数如下。

字段 是否必须 类型 默认值 说明
audio File 要识别的音频文件
to_simple int 1 是否繁体转简体
remove_pun int 0 是否移除标点符号
task String transcribe 识别任务类型,支持transcribe和translate
language String zh 设置语言,简写,如果为None则自动检测语言

返回结果:

字段 类型 说明
results list 分割的识别结果
+result str 每片分隔的文本结果
+start int 每片分隔的开始时间,单位秒
+end int 每片分隔的结束时间,单位秒
code int 错误码,0即为成功识别

示例如下:

{
  "results": [
    {
      "result": "近几年,不但我用书给女儿压碎,也全说亲朋不要给女儿压碎钱,而改送压碎书。",
      "start": 0,
      "end": 8
    }
  ],
  "code": 0
}

为了方便理解,这里提供了调用Web接口的Python代码,下面的是/recognition的调用方式。

import requests

response = requests.post(url="http://127.0.0.1:5000/recognition", 
                         files=[("audio", ("test.wav", open("dataset/test.wav", 'rb'), 'audio/wav'))],
                         json={"to_simple": 1, "remove_pun": 0, "language": "zh", "task": "transcribe"}, timeout=20)
print(response.text)

下面的是/recognition_stream的调用方式。

import json
import requests

response = requests.post(url="http://127.0.0.1:5000/recognition_stream",
                         files=[("audio", ("test.wav", open("dataset/test_long.wav", 'rb'), 'audio/wav'))],
                         json={"to_simple": 1, "remove_pun": 0, "language": "zh", "task": "transcribe"}, stream=True, timeout=20)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
    if chunk:
        result = json.loads(chunk.decode())
        text = result["result"]
        start = result["start"]
        end = result["end"]
        print(f"[{start} - {end}]:{text}")

提供的测试页面如下:

首页http://127.0.0.1:5000/ 的页面如下:

首页

文档页面http://127.0.0.1:5000/docs 的页面如下:

文档页面

Android部署

安装部署的源码在AndroidDemo目录下,具体文档可以到该目录下的README.md查看。

Android效果图 Android效果图 Android效果图 Android效果图

Windows桌面应用

程序在WhisperDesktop目录下,具体文档可以到该目录下的README.md查看。


Windows桌面应用效果图

参考资料

  1. https://github.com/huggingface/peft
  2. https://github.com/guillaumekln/faster-whisper
  3. https://github.com/ggerganov/whisper.cpp
  4. https://github.com/Const-me/Whisper