Implementations of three models described in the three papers related to sequence matching:
Learning Natural Language Inference with Lstm by Shuohang Wang, Jing Jiang
Machine Comprehension Using Match-LSTM and Answer Pointer by Shuohang Wang, Jing Jiang
A Compare-Aggregate Model for Matching Text Sequences by Shuohang Wang, Jing Jiang
sh preprocess.sh snli
cd main
th main.lua -task snli -model mLSTM -dropoutP 0.3 -num_classes 3
sh preprocess.sh snli
will download the datasets and preprocess the SNLI corpus into the files
(train.txt dev.txt test.txt) under the path "data/snli/sequence" with the format:
sequence1(premise) \t sequence2(hypothesis) \t label(from 1 to num_classes) \n
main.lua
will first initialize the preprossed data and word embeddings into a Torch format and
then run the alogrithm. "dropoutP" is the main prarameter we tuned.
You may try to use Docker for running the code.
After installation, just run the following codes (/PATH/SeqMatchSeq need to change):
docker run -it -v /PATH/SeqMatchSeq:/opt --rm -w /opt shuohang/seqmatchseq:1.0 /bin/bash -c "sh preprocess.sh snli"
docker run -it -v /PATH/SeqMatchSeq:/opt --rm -w /opt/main shuohang/seqmatchseq:1.0 /bin/bash -c "th main.lua"
sh preprocess.sh squad
cd main
th mainDt.lua
sh preprocess.sh squad
will download the datasets and preprocess the SQuAD corpus into the files
(train.txt dev.txt) under the path "data/squad/sequence" with the format:
sequence1(Doument) \t sequence2(Question) \t sequence of the positions where the answer appear in Document (e.g. 3 4 5 6) \n
mainDt.lua
will first initialize the preprossed data and word embeddings into a Torch format and
then run the alogrithm. As this code is run through multiple CPU cores, the initial parameters are
written in the file "main/init.lua".
opt.num_processes
: 5. The number of threads used.opt.batch_size
: 6. Batch size for each thread. (Then the mini_batch would be 5*6 .)opt.model
: boundaryMPtr / sequenceMPtr You may try to use Docker for running the code.
After installation, just run the following codes (/PATH/SeqMatchSeq need to change):
docker run -it -v /PATH/SeqMatchSeq:/opt --rm -w /opt shuohang/seqmatchseq:1.0 /bin/bash -c "sh preprocess.sh squad"
docker run -it -v /PATH/SeqMatchSeq:/opt --rm -w /opt/main shuohang/seqmatchseq:1.0 /bin/bash -c "th mainDt.lua"
For now, this code only support SNLI and WikiQA data sets.
SNLI task (The preprocessed format follows the previous description):
sh preprocess.sh snli
cd main
th main.lua -task snli -model compAggSNLI -comp_type submul -learning_rate 0.002 -mem_dim 150 -dropoutP 0.3
WikiQA task:
sh preprocess.sh wikiqa (Please first dowload the file "WikiQACorpus.zip" to the path SeqMatchSeq/data/wikiqa/ through address: https://www.microsoft.com/en-us/download/details.aspx?id=52419)
cd main
th main.lua -task wikiqa -model compAggWikiqa -comp_type mul -learning_rate 0.004 -dropoutP 0.04 -batch_size 10 -mem_dim 150
model
(model name) : compAggSNLI / compAggWikiqa comp_type
(8 different types of word comparison): submul / sub / mul / weightsub / weightmul / bilinear / concate / cosYou may try to use Docker for running the code.
After installation, just run the following codes (/PATH/SeqMatchSeq need to change):
For SNLI:
docker run -it -v /PATH/SeqMatchSeq:/opt --rm -w /opt shuohang/seqmatchseq:1.0 /bin/bash -c "sh preprocess.sh snli"
docker run -it -v /PATH/SeqMatchSeq:/opt --rm -w /opt/main shuohang/seqmatchseq:1.0 /bin/bash -c "th main.lua -task snli -model compAggSNLI -comp_type submul -learning_rate 0.002 -mem_dim 150 -dropoutP 0.3"
For WikiQA
docker run -it -v /PATH/SeqMatchSeq:/opt --rm -w /opt shuohang/seqmatchseq:1.0 /bin/bash -c "sh preprocess.sh wikiqa"
docker run -it -v /PATH/SeqMatchSeq:/opt --rm -w /opt/main shuohang/seqmatchseq:1.0 /bin/bash -c "th main.lua -task wikiqa -model compAggWikiqa -comp_type mul -learning_rate 0.004 -dropoutP 0.04 -batch_size 10 -mem_dim 150"
Copyright 2015 Singapore Management University (SMU). All Rights Reserved.