shuowang666 / SQD-MapNet

[ECCV2024] SQD-MapNet: Stream Query Denoising for Vectorized HD-Map Construction
GNU General Public License v3.0
7 stars 0 forks source link

SQD-MapNet

[ECCV 2024] Stream Query Denoising for Vectorized HD Map Construction

[![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2401.09112)

Introduction

This repository is an official implementation of SQD-MapNet.

Getting Started

1. Environment

Step 1. Create conda environment and activate it.

conda create --name sqdmapnet python=3.8 -y
conda activate sqdmapnet

Step 2. Install PyTorch.

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

Step 3. Install MMCV series.

# Install mmcv-series
pip install mmcv-full==1.6.0
pip install mmdet==2.28.2
pip install mmsegmentation==0.30.0
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v1.0.0rc6 
pip install -e .
pip install -r requirements.txt

Step 4. Install other requirements.

cd ..
pip install -r requirements.txt

2. Data Preparation

Step 1. Download NuScenes dataset to ./datasets/nuScenes.

Step 2. Download Argoverse2 (sensor) dataset to ./datasets/av2.

Step 3. Generate annotation files for NuScenes dataset.

python tools/nuscenes_converter.py --data-root ./datasets/nuScenes

Step 4. Generate annotation files for Argoverse2 dataset.

python tools/argoverse_converter.py --data-root ./datasets/av2

3. Training and Validating

To train a model with 8 GPUs:

bash tools/dist_train.sh ${CONFIG} 8

To validate a model with 8 GPUs:

bash tools/dist_test.sh ${CONFIG} ${CEHCKPOINT} 8 --eval

Results

Results on NuScenes

Range $\mathrm{AP}_{ped}$ $\mathrm{AP}_{div}$ $\mathrm{AP}_{bound}$ $\mathrm{AP}$ Config Epoch Checkpoint
$60\times 30\ m$ 63.0 65.5 63.3 63.9 Config 24 ckpt
$100\times 50\ m$ 67.0 65.5 59.5 64.0 Config 24 ckpt

📖 Citation

If you find our code or paper helps, please consider citing:

@article{wang2024stream,
  title={Stream query denoising for vectorized hd map construction},
  author={Wang, Shuo and Jia, Fan and Liu, Yingfei and Zhao, Yucheng and Chen, Zehui and Wang, Tiancai and Zhang, Chi and Zhang, Xiangyu and Zhao, Feng},
  journal={arXiv preprint arXiv:2401.09112},
  year={2024}
}

Acknowledgments

We sincerely thank the open-sourcing of these works where our code is based on: StreamMapNet and DN-DETR.