This repository is an official implementation of SQD-MapNet.
Step 1. Create conda environment and activate it.
conda create --name sqdmapnet python=3.8 -y
conda activate sqdmapnet
Step 2. Install PyTorch.
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
Step 3. Install MMCV series.
# Install mmcv-series
pip install mmcv-full==1.6.0
pip install mmdet==2.28.2
pip install mmsegmentation==0.30.0
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v1.0.0rc6
pip install -e .
pip install -r requirements.txt
Step 4. Install other requirements.
cd ..
pip install -r requirements.txt
Step 1. Download NuScenes dataset to ./datasets/nuScenes
.
Step 2. Download Argoverse2 (sensor) dataset to ./datasets/av2
.
Step 3. Generate annotation files for NuScenes dataset.
python tools/nuscenes_converter.py --data-root ./datasets/nuScenes
Step 4. Generate annotation files for Argoverse2 dataset.
python tools/argoverse_converter.py --data-root ./datasets/av2
To train a model with 8 GPUs:
bash tools/dist_train.sh ${CONFIG} 8
To validate a model with 8 GPUs:
bash tools/dist_test.sh ${CONFIG} ${CEHCKPOINT} 8 --eval
Range | $\mathrm{AP}_{ped}$ | $\mathrm{AP}_{div}$ | $\mathrm{AP}_{bound}$ | $\mathrm{AP}$ | Config | Epoch | Checkpoint |
---|---|---|---|---|---|---|---|
$60\times 30\ m$ | 63.0 | 65.5 | 63.3 | 63.9 | Config | 24 | ckpt |
$100\times 50\ m$ | 67.0 | 65.5 | 59.5 | 64.0 | Config | 24 | ckpt |
If you find our code or paper helps, please consider citing:
@article{wang2024stream,
title={Stream query denoising for vectorized hd map construction},
author={Wang, Shuo and Jia, Fan and Liu, Yingfei and Zhao, Yucheng and Chen, Zehui and Wang, Tiancai and Zhang, Chi and Zhang, Xiangyu and Zhao, Feng},
journal={arXiv preprint arXiv:2401.09112},
year={2024}
}
We sincerely thank the open-sourcing of these works where our code is based on: StreamMapNet and DN-DETR.