python train_recomb.py --train --load='recomb_epoch_0.pth'
python train_scan.py --train --load='scan_epoch_1499.pth'
python vae_disentangle.py
python train_vae.py --train --load='vae_epoch_2900.pth'
python train_dae.py --train --load='dae_epoch_2900.pth'
beta-VAE/Peiyao_Sheng_beta_VAE.ipynb
0117
wall_color = 0 wall_color = 0 & floor_color = 0
0108
current results:
z3: color and shape z4: color of floor z15: color of wall
0106 Implementing PART Ⅰ with Pytorch
denoising autoencoder(DAE)
continue training process by command
python train_dae.py --train --load='dae_epoch_2900.pth'
current results:
target reconstruction
0105 Review the paper of SCAN and observe that it includes three parts:
p.s. I didn't find the original dataset and use this mimic version to implement models
Some Ref: TensorFlow Version
See beta-VAE/Peiyao_Sheng_beta_VAE.ipynb
for more implementation details.