sjtu-marl / malib

A parallel framework for population-based multi-agent reinforcement learning.
https://malib.io
MIT License
499 stars 60 forks source link
distributed games multiagent parallel python ray reinforcement-learning

MALib: A parallel framework for population-based reinforcement learning

GitHub license Documentation Status Build Status codecov

MALib is a parallel framework of population-based learning nested with reinforcement learning methods, such as Policy Space Response Oracle, Self-Play, and Neural Fictitious Self-Play. MALib provides higher-level abstractions of MARL training paradigms, which enables efficient code reuse and flexible deployments on different distributed computing paradigms.

architecture

Installation

The installation of MALib is very easy. We've tested MALib on Python 3.8 and above. This guide is based on Ubuntu 18.04 and above (currently, MALib can only run on Linux system). We strongly recommend using conda to manage your dependencies, and avoid version conflicts. Here we show the example of building python 3.8 based conda environment.

conda create -n malib python==3.8 -y
conda activate malib

# install dependencies
./install.sh

Environments

MALib integrates many popular reinforcement learning environments, we list some of them as follows.

See malib/envs for more details. In addition, users can customize environments with MALib's environment interfaces. Please refer to our documentation.

Algorithms and Scenarios

MALib integrates population-based reinforcement learning, popular deep reinforcement learning algorithms. See algorithms table here. The supported learning scenarios are listed as follow:

Quick Start

Before running examples, please ensure that you import python path as:

cd malib

# if you run malib installation with `pip install -e .`, you can ignore the path export
export PYTHONPATH=./

Documentation

See online documentation at MALib Docs, or you can also compile a local version by compiling local files as

pip install -e .[dev]
make docs-compile

Then start a web server to get the docs:

# execute following command, then the server will start at: http://localhost:8000
make docs-view

Contributing

Read CONTRIBUTING.md for more details.

Citing MALib

If you use MALib in your work, please cite the accompanying paper.

@article{JMLR:v24:22-0169,
  author  = {Ming Zhou and Ziyu Wan and Hanjing Wang and Muning Wen and Runzhe Wu and Ying Wen and Yaodong Yang and Yong Yu and Jun Wang and Weinan Zhang},
  title   = {MALib: A Parallel Framework for Population-based Multi-agent Reinforcement Learning},
  journal = {Journal of Machine Learning Research},
  year    = {2023},
  volume  = {24},
  number  = {150},
  pages   = {1--12},
  url     = {http://jmlr.org/papers/v24/22-0169.html}
}