To cite our work, please use the following BibTeX entry:
@article{tian2024matrix,
title = {Matrix-weighted networks for modeling multidimensional dynamics},
author = {Yu Tian and Sadamori Kojaku and Hiroki Sayama and Renaud Lambiotte},
year = 2024,
publisher = {{arXiv}},
number = {arXiv:2410.05188},
eprint = {arXiv:2410.05188},
archiveprefix = {arxiv},
}
Set up the virtual environment and install the required packages:
conda create -n matnet python=3.10
conda activate matnet
conda install -c conda-forge mamba -y
mamba install -y -c bioconda -c conda-forge snakemake -y
mamba install -c conda-forge graph-tool scikit-learn numpy==1.23.5 numba scipy pandas networkx seaborn matplotlib ipykernel tqdm black -y
Create a file config.yaml
with the following content and place it under the workflow
folder:
data_dir: "data/"
fig_dir: "figs/"
Run the following command to execute the Snakemake
workflow:
snakemake --cores 24 all
This will generate all files needed to produce the figures. Then, run
snakemake --cores 24 figs
You can change the number of cores to use, instead of 24.