smthemex / ComfyUI_Stable_Makeup

You can apply makeup to the characters in comfyui
Apache License 2.0
65 stars 2 forks source link

ComfyUI_Stable_Makeup

You can apply makeup to the characters in comfyui

Stable_Makeup From: Stable_Makeup

Update

2024/09/06

Previous updates
剔除diffuser模型,改成单体的模型 “v1-5-pruned-emaonly.safetensors”,
可以尝试不同的数据集,当然,意味着你要多下载几个SPIGA模型;

--- You can try different datasets, of course, which means you need to download a few more SPIGA models;
---Fix the error where models that were not downloaded in advance cannot be loaded;

1.Installation

In the ./ComfyUI /custom_node directory, run the following:

git clone https://github.com/smthemex/ComfyUI_Stable_Makeup.git

2.requirements

only insightface in requirements.txt

pip install -r requirements.txt

按理是不需要装特别的库,因为内置了,如果还是库丢失,请单独安装. 便携包和秋叶包请注意使用python -m pip install

If the module is missing, please open "no need requirements.txt" , pip install or python -m pip install missing module.

3 Need model

模型的下载地址比较杂,所以使用前请下下载,并存放在ComfyUI/models/stable_makeup 文件夹下:
The download address for the model is quite miscellaneous, so please download it before use and store it in the ComfyUI/models/table_makeup folder:

3.1 spiga_300wpublic.pt or other models link

3.2 pytorch_model.bin
pytorch_model_1.bin
pytorch_model_2.bin link

3.3 mobilenet0.25_Final.pth link
or
resnet50.pth link

3.4 clip模型,外置为输入格式,可以引导至本地其他路径。
"openai/clip-vit-large-patch14" clip models

3.5 SD1.5
any sd1.5 weights,

Models list

├── ComfyUI/models/  
|     ├──stable_makeup
|         ├── mobilenet0.25_Final.pth
|         ├── pytorch_model.bin
|         ├── pytorch_model_1.bin
|         ├── pytorch_model_2.bin
|         ├── spiga_300wpublic.pt
|         ├── resnet50.pth
├── ComfyUI/models/checkpoints
|         ├──  any sd1.5 weights,

首次使用需要下载openai/clip-vit-large-patch14

Example

6 Citation

@article{zhang2024stable,
  title={Stable-Makeup: When Real-World Makeup Transfer Meets Diffusion Model},
  author={Zhang, Yuxuan and Wei, Lifu and Zhang, Qing and Song, Yiren and Liu, Jiaming and Li, Huaxia and Tang, Xu and Hu, Yao and Zhao, Haibo},
  journal={arXiv preprint arXiv:2403.07764},
  year={2024}
}

SPIGA From: SPIGA

@inproceedings{Prados-Torreblanca_2022_BMVC,
  author    = {Andrés  Prados-Torreblanca and José M Buenaposada and Luis Baumela},
  title     = {Shape Preserving Facial Landmarks with Graph Attention Networks},
  booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
  publisher = {{BMVA} Press},
  year      = {2022},
  url       = {https://bmvc2022.mpi-inf.mpg.de/0155.pdf}
}

FaceLib From: FaceLib