spaceml-org / ml4floods

An ecosystem of data, models and code pipelines to tackle flooding with ML🌊
https://spaceml-org.github.io/ml4floods/
GNU Lesser General Public License v3.0
139 stars 41 forks source link

Article DOI:10.1038/s41598-023-47595-7 PyPI PyPI - Python Version PyPI - License HF HF docs

awesome ml4floods

ML4Floods is an end-to-end ML pipeline for flood extent estimation: from data preprocessing, model training, model deployment to visualization. Here you can find the WorldFloodsV2🌊 dataset and trained models 🤗 for flood extent estimation in Sentinel-2 and Landsat.

awesome flood extent estimation

Install

Install from pip:

pip install ml4floods

Install the latest version from GitHub:

pip install git+https://github.com/spaceml-org/ml4floods#egg=ml4floods

Docs

docs

These tutorials may help you explore the datasets and models:

The WorldFloods database

HF

The WorldFloods database contains 509 pairs of Sentinel-2 images and flood segmentation masks. It requires approximately 76GB of hard-disk storage.

The WorldFloods database and all pre-trained models are released under a Creative Commons non-commercial licence

licence

To download the WorldFloods database or the pretrained flood segmentation models see the instructions to download the database.

Cite

If you find this work useful please cite:

@article{portales-julia_global_2023,
    title = {Global flood extent segmentation in optical satellite images},
    volume = {13},
    issn = {2045-2322},
    doi = {10.1038/s41598-023-47595-7},
    number = {1},
    urldate = {2023-11-30},
    journal = {Scientific Reports},
    author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis},
    month = nov,
    year = {2023},
    pages = {20316},
}
@article{mateo-garcia_towards_2021,
    title = {Towards global flood mapping onboard low cost satellites with machine learning},
    volume = {11},
    issn = {2045-2322},
    doi = {10.1038/s41598-021-86650-z},
    number = {1},
    urldate = {2021-04-01},
    journal = {Scientific Reports},
    author = {Mateo-Garcia, Gonzalo and Veitch-Michaelis, Joshua and Smith, Lewis and Oprea, Silviu Vlad and Schumann, Guy and Gal, Yarin and Baydin, Atılım Güneş and Backes, Dietmar},
    month = mar,
    year = {2021},
    pages = {7249},
}

About

ML4Floods has been funded by the United Kingdom Space Agency (UKSA) and led by Trillium Technologies. In addition, this research has been partially supported by the DEEPCLOUD project (PID2019-109026RB-I00) funded by the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) and the European Union (NextGenerationEU).