stevengharris / SplitView

A flexible way to split SwiftUI views with a draggable splitter
MIT License
146 stars 17 forks source link
split swift swiftui

iOS 15.6+ MacCatalyst 15.6+ MacCatalyst 12.4+ Mastodon: @stevengharris@mastodon.social

SplitView

The Split, HSplit, and VSplit views and associated modifiers let you:

Motivation

NavigationSplitView is fine for a sidebar and for applications that conform to a nice master-detail type of model. On the other hand, sometimes you just need two views to sit side-by-side or above-and-below each other and to adjust the split between them. You also might want to compose split views in ways that make sense in your own application context.

Demo

SplitView

This demo is available in the Demo directory as SplitDemo.xcodeproj.

Usage

Install the package.

Note: You can also use the .split, .vSplit, and .hSplit view modifiers that come with the package to create a Split, VSplit, and HSplit view if that makes more sense to you. See the discussion in Style.

Once you have created a Split, HSplit, or VSplit view, you can use view modifiers on them to:

In its simplest form, the HSplit and VSplit views look like this:

HSplit(left: { Color.red }, right: { Color.green })
VSplit(top: { Color.red }, bottom: { Color.green })

The HSplit is a horizontal split view, evenly split between red on the left and green on the right. The VSplit is a vertical split view, evenly split between red on the top and green on the bottom. Both views use a default splitter between them that can be dragged to change the red and green view sizes.

If you want to set the the initial position of the splitter, you can use the fraction modifier. Here it is being used with a VSplit view:

VSplit(top: { Color.red }, bottom: { Color.green })
    .fraction(0.25)

Now you get a red view above the green view, with the top occupying 1/4 of the window.

Often you want to hide/show one of the views you split. You can do this by specifying the side to hide. Specify the side using a SplitSide. For an HSplit view, you can identify the side using .left or .right. For a VSplit view, you can use .top or .bottom. For a Split view (where the layout can change), use .primary or .secondary. In fact, .left, .top, and .primary are all synonyms and can be used interchangably. Similarly, .right, .bottom, and .secondary are synonyms.

Here is an HSplit view that hides the right side when it opens:

HSplit(left: { Color.red }, right: { Color.green })
    .fraction(0.25)
    .hide(.right)

The green side will be hidden, but you can pull it open using the splitter that will be visible on the right. This isn't usually what you want, though. Usually you want your users to be able to control whether a side is hidden or not. To do this, pass the SideHolder ObservableObject that holds onto the side you are hiding. Similarly the SplitView package comes with a FractionHolder and LayoutHolder. Under the covers, the Split view observes all of these holders and redraws itself if they change.

Here is an example showing how to use the SideHolder with a Button to hide/show the right (green) side:

struct ContentView: View {
    let hide = SideHolder()         // By default, don't hide any side
    var body: some View {
        VStack(spacing: 0) {
            Button("Toggle Hide") {
                withAnimation {
                    hide.toggle()   // Toggle between hiding nothing and hiding right
                }
            }
            HSplit(left: { Color.red }, right: { Color.green })
                .hide(hide)
        }
    }
}

Note that the hide modifier accepts a SplitSide or a SideHolder. Similarly, layout can be passed as a SplitLayout - .horizontal or .vertical - or as a LayoutHolder. And fraction can be passed as a CGFloat or as a FractionHolder.

The toggle() method on hide toggles the hide/show state for the secondary side by default. If you want to toggle the hide/show state for a specific side, then use toggle(.primary) or toggle(.secondary) explicitly. (Note that .primary, .left, and .top are synonyms; and .secondary, .right, and .bottom are synonyms.)

Nesting Split Views

Split views themselves can be split. Here is an example where the right side of an HSplit is a VSplit that has an HSplit at the bottom:

struct ContentView: View {
    var body: some View {
        HSplit(
            left: { Color.green },
            right: {
                VSplit(
                    top: { Color.red },
                    bottom: {
                        HSplit(
                            left: { Color.blue },
                            right: { Color.yellow }
                        )
                    }
                )
            }
        )
    }
}

And here is one where an HSplit contains two VSplits:

struct ContentView: View {
    var body: some View {
        HSplit(
            left: { 
                VSplit(top: { Color.red }, bottom: { Color.green })
            },
            right: {
                VSplit(top: { Color.yellow }, bottom: { Color.blue })
            }
        )
    }
}

Using UserDefaults For Split State

The three holders - SideHolder, LayoutHolder, and FractionHolder - all come with a static method to return instances that get/set their state from UserDefaults.standard. Let's expand the previous example to be able to change the layout and hide state and to get/set their values from UserDefaults. Note that if you want to adjust the layout, you need to use a Split view, not HSplit or VSplit. We create the Split view by specifying the primary and secondary views. When the SplitLayout held by the LayoutHolder (layout) is .horizontal, the primary view is on the left side, and the secondary view is on the right. When the SplitLayout toggles to vertical, the primary view is on the top, and the secondary view is on the bottom.

struct ContentView: View {
    let fraction = FractionHolder.usingUserDefaults(0.5, key: "myFraction")
    let layout = LayoutHolder.usingUserDefaults(.horizontal, key: "myLayout")
    let hide = SideHolder.usingUserDefaults(key: "mySide")
    var body: some View {
        VStack(spacing: 0) {
            HStack {
                Button("Toggle Layout") {
                    withAnimation {
                        layout.toggle()
                    }
                }
                Button("Toggle Hide") {
                    withAnimation {
                        hide.toggle()
                    }
                }
            }
            Split(primary: { Color.red }, secondary: { Color.green })
                .fraction(fraction)
                .layout(layout)
                .hide(hide)
        }
    }
}

The first time you open this, the sides will be split 50-50, but as you drag the splitter, the fraction state is also retained in UserDefaults.standard. You can change the layout and hide/show the green view, and when you next open the app, the fraction, hide, and layout will all be restored how you left them.

Modifying And Constraining The Default Splitter

You can change the way the default Splitter displays using the styling modifier. For example, you can change the color, inset, and thickness:

HSplit(left: { Color.red }, right: { Color.green })
    .fraction(0.25)
    .styling(color: Color.cyan, inset: 4, visibleThickness: 8)

If you prefer the splitter to hide also when you hide a side, you can set hideSplitter to true in the styling modifier. For example:

HSplit(left: { Color.red }, right: { Color.green })
    .styling(hideSplitter: true)

Note that if you set hideSplitter to true, you need to include a means for your user to unhide a view once it is hidden, like a hide/show button. That's because the splitter itself isn't displayed at all, so you can't just drag it out from the side.

By default, the splitter can be dragged across the full width/height of the split view. The constraints modifier lets you constrain the minimum faction of the overall view that the "primary" and/or "secondary" view occupies, so the splitter always stays within those constraints. You can do this by specifying minPFraction and/or minSFraction. The minPFraction refers to left in HSplit and top in VSplit, while minSFraction refers to right in HSplit and bottom in VSplit:

HSplit(left: { Color.red }, right: { Color.green })
    .fraction(0.3)
    .constraints(minPFraction: 0.2, minSFraction: 0.2)

Drag-To-Hide

When you constrain the fraction of the primary or secondary side, you may want the side to hide automatically when you drag past the constraint. However, we need to trigger this drag-to-hide behavior when you drag "well past" the constraint, because otherwise, it's difficult to leave the splitter positioned at the constraint without hiding it. For this reason, a split view defines "well past" to mean "more than halfway past the contraint".

Drag-to-hide can be a nice shortcut to avoid having to press a button to hide a side. You can see an example of it in Xcode when you drag the splitter between the editor area in the middle and the Inspector on the right beyond the constraint Xcode puts on the Inspector width. In Xcode, when you drag-to-hide the splitter between the editor area and the Inspector, you cannot drag it back out because the splitter itself is hidden. You need a button to invoke the hide/show action, as discussed earlier. The same is true with drag-to-hide using a split view when hideSplitter is true.

When your cursor moves beyond the halfway point of the constrained side, the split view previews what it will look like when the side is hidden. This way, you have a visual indication that the side will hide, and you can drag back out to avoid hiding it. If your dragging ends when the side is hidden, then it will remain hidden.

Note that when you use drag-to-hide, the splitter may or may not be hidden when the side is hidden (depending on whether hideSplitter is true in SplitStyling). The preview of what the split view will look like if you release past the halfway point reflects your choice of setting for hideSplitter.

To use drag-to-hide, add dragToHideP and/or dragToHideS to your constraints definition. For example, the following will constrain dragging between 20% and 80% of the width, but when the drag gesture ends at or beyond the 90% mark on the right, the secondary side will hide. Note also that in this case, the primary side doesn't use drag-to-hide:

HSplit(left: { Color.red }, right: { Color.green })
    .constraints(minPFraction: 0.2, minSFraction: 0.2, dragToHideS: true)

Custom Splitters

By default the Split, HSplit, and VSplit views all use the default Splitter view. You can create your own and use it, though. Your custom splitter should conform to SplitDivider protocol, which makes sure your custom splitter can let the Split view know what its styling is. The styling.visibleThickness is the size your custom splitter displays itself in, and it also defines the spacing between the primary and secondary views inside of Split view.

The Split view detects drag events occurring in the splitter. For this reason, you might want to use a ZStack with an underlying Color.clear that represents the styling.invisibleThickness if the styling.visibleThickness is too small for properly detecting the drag events.

Here is an example custom splitter whose contents is sensitive to the observed layout and hide state:

struct CustomSplitter: SplitDivider {
    @ObservedObject var layout: LayoutHolder
    @ObservedObject var hide: SideHolder
    @ObservedObject var styling: SplitStyling
    /// The `hideButton` state tells whether the custom splitter hides the button that normally shows
    /// in the middle. If `styling.previewHide` is true, then we only want to show the button if
    /// `styling.hideSplitter` is also true.
    /// In general, people using a custom splitter need to handle the layout when `previewHide`
    /// is triggered and that layout may depend on whether `hideSplitter` is `true`.
    @State private var hideButton: Bool = false
    let hideRight = Image(systemName: "arrowtriangle.right.square")
    let hideLeft = Image(systemName: "arrowtriangle.left.square")
    let hideDown = Image(systemName: "arrowtriangle.down.square")
    let hideUp = Image(systemName: "arrowtriangle.up.square")

    var body: some View {
        if layout.isHorizontal {
            ZStack {
                Color.clear
                    .frame(width: 30)
                    .padding(0)
                if !hideButton {
                    Button(
                        action: { withAnimation { hide.toggle() } },
                        label: {
                            hide.side == nil ? hideRight.imageScale(.large) : hideLeft.imageScale(.large)
                        }
                    )
                    .buttonStyle(.borderless)
                }
            }
            .contentShape(Rectangle())
            .onChange(of: styling.previewHide) { hide in
                hideButton = styling.hideSplitter
            }
        } else {
            ZStack {
                Color.clear
                    .frame(height: 30)
                    .padding(0)
                if !hideButton {
                    Button(
                        action: { withAnimation { hide.toggle() } },
                        label: {
                            hide.side == nil ? hideDown.imageScale(.large) : hideUp.imageScale(.large)
                        }
                    )
                    .buttonStyle(.borderless)
                }
            }
            .contentShape(Rectangle())
            .onChange(of: styling.previewHide) { hide in
                hideButton = styling.hideSplitter
            }
        }
    }}

You can use the CustomSplitter like this:

struct ContentView: View {
    let layout = LayoutHolder()
    let hide = SideHolder()
    let styling = SplitStyling(visibleThickness: 20)
    var body: some View {
        Split(primary: { Color.red }, secondary: { Color.green })
            .layout(layout)
            .hide(hide)
            .splitter { CustomSplitter(layout: layout, hide: hide, styling: styling) }
    }
}

If you make a custom splitter that would be generally useful to people, consider filing a pull request for an additional Splitter extension in Splitter+Extensions.swift. The line Splitter is included in the file as an example that is used in the "Sidebars" demo. Similarly, the invisible Splitter re-uses the line splitter by passing a visibleThickness of zero and is used in the "Invisible splitter" demo.

Invisible Splitters

You might want the views you split to be adjustable using the splitter, but for the splitter itself to be invisible. For example, a "normal" sidebar doesn't show a splitter between itself and the detail view it sits next to. You can do this by passing Splitter.invisible() as the custom splitter.

One thing to watch out for with an invisible splitter is that when a side is hidden, there is no visual indication that it can be dragged back out. To prevent this issue, you should specify minPFraction and minSFraction when using Splitter.invisible().

struct ContentView: View {
    let hide = SideHolder()
    var body: some View {
        VStack(spacing: 0) {
            Button("Toggle Hide") {
                withAnimation {
                    hide.toggle()   // Toggle between hiding nothing and hiding secondary
                }
            }
            HSplit(left: { Color.red }, right: { Color.green })
                .hide(hide)
                .constraints(minPFraction: 0.2, minSFraction: 0.2)
                .splitter { Splitter.invisible() }
        }
    }
}

Monitoring And Responding To Splitter Movement

You can specify a callback for the split view to execute as you drag the splitter. The callback reports the privateFraction being tracked; i.e., the fraction of the full width/height occupied by the left/top side. Specify the callback using the onDrag(_:) modifier for any of the split views.

Here is an example of a DemoSlider that uses the onDrag(_:) modifier to update a Text view showing the percentage each side is occupying.

struct DemoSlider: View {
    @State private var privateFraction: CGFloat = 0.5
    var body: some View {
        HSplit(
            left: {
                ZStack {
                    Color.green
                    Text(percentString(for: .left))
                }
            },
            right: {
                ZStack {
                    Color.red
                    Text(percentString(for: .right))
                }
            }
        )
        .onDrag { fraction in privateFraction = fraction }
        .frame(width: 400, height: 30)
    }

    /// Return a string indicating the percentage occupied by `side`
    func percentString(for side: SplitSide) -> String {
        var percent: Int
        if side.isPrimary {
            percent = Int(round(100 * privateFraction))
        } else {
            percent = Int(round(100 * (1 - privateFraction)))
        }
        // Empty string if the side will be too small to show it
        return percent < 10 ? "" : "\(percent)%"
    }
}

It looks like this:

DemoSlider

Prioritizing The Size Of A Side

When you want a sidebar type of arrangement using HSplit views, you often want the sidebar to maintain its width as you resize the overall view. You might have the same need with a VSplit, too. If you have two sidebars, you may want to slide either one while the opposing one stays the same width. You can accomplish this by specifying a priority side (either .left/.right or .top/.bottom) in the constraints modifier.

Here is an example that has a red left sidebar and green right sidebar surrounding a yellow middle view. As you drag either splitter, the other stays fixed. Under the covers, the Split view is adjusting the proportion between primary and secondary to keep the splitter in the same place. You will also see that as you resize the window, both sidebars maintain their width.

struct ContentView: View {
    var body: some View {
        HSplit(
            left: { Color.red },
            right: {
                HSplit(
                    left: { Color.yellow },
                    right: { Color.green }
                )
                .fraction(0.75)
                .constraints(priority: .right)
            }
        )
        .fraction(0.2)
        .constraints(priority: .left)
    }
}

Note that in the example above, the two sidebars have the same width, which is 0.2 of the overall width, even though the fractions specified for the left and right sides are 0.2 and 0.75 respectively. This is because the left side of the outer HSplit is 0.2 of the overall width, leaving 0.8 to divide in the inner HSplit. The left side of the inner HSplit is 0.75*0.8 or 0.6 of the overall width, leaving the right side of the inner HSplit to be 0.2 of the overall width.

Implementation

The heart of the implementation here is the Split view. VSplit and HSplit are really convenience and clarity wrappers around Split. There is probably not a big need for most people to be able to adjust layout dynamically, which is really the only reason to use Split directly.

Although ultimately Split has to deal in width and height, the math of adjusting the layout is the same whether its primary is at the left or top and its secondary is at the right or bottom.

The main piece of state that changes in Split view is constrainedFraction. This is the fraction of the overall width/height occupied by the primary view. It changes as you drag the splitter. When you hide/show, it does not change, because it holds the state needed to restore-to when a hidden view is shown again. The Split view monitors changes to its size. The size changes when its containing view changes size (e.g., resizing a window on the Mac or when nested in another Split view whose splitter is dragged).

The three views, Split, HSplit, and VSplit all support the same modifiers to adjust fraction, hide, styling, constraints, onDrag, and splitter. The Split view also has a modifier for layout (which is also used by HSplit and VSplit) and a few convenience modifiers used by HSplit and VSplit.

Style

After going all-in on a View modifier style to return a single Split-type of view for any View it is invoked on, I read an article by John Sundell that illustrated some of the "problematic" issues associated with view modifiers creating different container views. As a result, I reconsidered my approach. I'm still using view modifiers extensively, but now they operate on an explicit Split, HSplit, or VSplit container, and always return the same type of view they modify. I think this makes usage a lot more clear in the end.

If you prefer the idea of a View modifier to kick off your Split, HSplit, or VSplit creation, you can still use:

Color.green.hSplit { Color.red }   // Returns an HSplit
Color.green.vSplit { Color.red }   // Returns a VSplit
Color.green.split { Color.red }    // Returns a Split

instead of:

HSplit(left: { Color.green }, right: { Color.red } )
VSplit(top: { Color.green }, bottom: { Color.red } )
Split(primary: { Color.green }, secondary: { Color.red })

Issues

  1. In versions prior to MacOS 14.0 Sonoma, there is what appears to be a harmless log message when dragging the Splitter to cause a view size to go to zero on Mac Catalyst only. The message shows up in the Xcode console as [API] cannot add handler to 3 from 3 - dropping. This message is not present as of MacOS 14.0 Sonoma.

  2. The Splitter's onHover entry action used to display the resizing cursors on Mac Catalyst and MacOS may occasionally not be triggered when using nested split views. I think this happens seldom enough to not be a problem. When it occurs, the cursor doesn't change to resizeLeftRight or resizeUpDown when hovering over a splitter, but the splitter will still be draggable.

Possible Enhancements

I might add a few things but would be very happy to accept pull requests! For example, a split view that adapted to device orientation and form factors somewhat like NavigationSplitView would be useful.

History

Version 3.5

Version 3.4

Version 3.3

Version 3.2

Version 3.1

Version 3.0

Version 2.0

Version 1.1

Version 1.0

Make layout adjustable. Clean up and formalize the SplitDemo, including the custom splitter and "invisible" splitter. Update the README.

Version 0.2

Eliminates the use of the clear background and SizePreferenceKeys. (My suspicion is they were needed earlier because GeometryReader otherwise caused bad behavior, but in any case they are not needed now.) Eliminate HSplitView and VSplitView, which were themselves holding onto a SplitView. The layering was both unnecessary and not adding value other than making it explicit what kind of SplitView was being created. I concluded that the same expression was actually clearer and more concise using ViewModifiers. I also added the Example.xcworkspace.

Version 0.1

Originally posted in response to https://stackoverflow.com/q/67403140. This version used HSplitView and VSplitView as a means to create the SplitView. It also used SizePreferenceKeys from a GeometryReader on a clear background to set the size. In nested SplitViews, I found this was causing "Bound preference ... tried to update multiple times per frame" to happen intermittently depending on the view arrangement.