Copyright (c) 2017-2021, Sumokoin Projects
Portions Copyright (c) 2014-2021, The Monero Project
Portions Copyright (c) 2012-2013, The Cryptonote developers
Please note that code is developed on the dev branch, if you want to check out the latest updates, before they are merged on main branch, please refer there. Master branch will always point to a version that we consider stable, so you can download the code by simply typing git clone https://github.com/sumoprojects/sumokoin.git
Type | Status |
---|---|
Workflows |
Sumokoin (スモコイン in Japanese) is a fork from Monero, one of the most respectable cryptocurrency well-known for security, privacy, untraceability and active development. Starting as an educational project, we found that it would be great to create a new coin with high level of privacy by (1) moving forward right away to Ring Confidential Transactions (RingCT), (2) setting minimum transaction mixin to 12 (current minimum mixin set at 48) that would greatly reduce chance of being attacked, traced or identified by (blockchain) statistical analysis.
Sumokoin, therefore, is a new Monero without its legacy, a truely fungible cryptocurrency among just a few ones in the market.
* The emulated algorithm of Sumokoin block-reward emission can be found in Python and C++ scripts at scripts directory.
This is the core implementation of Sumokoin. It is open source and completely free to use without restrictions, except for those specified in the license agreement below. There are no restrictions on anyone creating an alternative implementation of Sumokoin that uses the protocol and network in a compatible manner.
As with many development projects, the repository on Github is considered to be the "staging" area for the latest changes. Before changes are merged into that branch on the main repository, they are tested by individual developers in their own branches, submitted as a pull request, and then subsequently tested by contributors who focus on testing and code reviews. That having been said, the repository should be carefully considered before using it in a production environment, unless there is a patch in the repository for a particular show-stopping issue you are experiencing. It is generally a better idea to use a tagged release for stability.
Anyone is welcome to contribute to Sumokoin's codebase! If you have a fix or code change, feel free to submit is as a pull request directly to the "master" branch. In cases where the change is relatively small or does not affect other parts of the codebase it may be merged in immediately by any one of the collaborators. On the other hand, if the change is particularly large or complex, it is expected that it will be discussed at length either well in advance of the pull request being submitted, or even directly on the pull request.
Please view LICENSE
The following table summarizes the tools and libraries required to build. A
few of the libraries are also included in this repository (marked as
"Vendored"). By default, the build uses the library installed on the system,
and ignores the vendored sources. However, if no library is found installed on
the system, then the vendored source will be built and used. The vendored
sources are also used for statically-linked builds because distribution
packages often include only shared library binaries (.so
) but not static
library archives (.a
).
Dep | Min. version | Vendored | Debian/Ubuntu pkg | Arch pkg | Fedora | Optional | Purpose |
---|---|---|---|---|---|---|---|
GCC | 5.4.0 | NO | build-essential |
base-devel |
gcc |
NO | |
CMake | 3.5 | NO | cmake |
cmake |
cmake |
NO | |
pkg-config | any | NO | pkg-config |
base-devel |
pkgconf |
NO | |
Boost | 1.58 | NO | libboost-all-dev |
boost |
boost-devel |
NO | C++ libraries |
OpenSSL | basically any | NO | libssl-dev |
openssl |
openssl-devel |
NO | sha256 sum |
libzmq | 4.2.0 | NO | libzmq3-dev |
zeromq |
zeromq-devel |
NO | ZeroMQ library |
OpenPGM | ? | NO | libpgm-dev |
libpgm |
openpgm-devel |
NO | For ZeroMQ |
libnorm[2] | ? | NO | libnorm-dev |
YES | For ZeroMQ | ||
libunbound | 1.4.16 | YES | libunbound-dev |
unbound |
unbound-devel |
NO | DNS resolver |
libevent | ? | NO | libevent-dev |
libevent |
libevent-devel |
YES | For unbound |
libsodium | ? | NO | libsodium-dev |
libsodium |
libsodium-devel |
NO | cryptography |
libunwind | any | NO | libunwind8-dev |
libunwind |
libunwind-devel |
YES | Stack traces |
liblzma | any | NO | liblzma-dev |
xz |
xz-devel |
YES | For libunwind |
libreadline | 6.3.0 | NO | libreadline6-dev |
readline |
readline-devel |
YES | Input editing |
ldns | 1.6.17 | NO | libldns-dev |
ldns |
ldns-devel |
YES | SSL toolkit |
expat | 1.1 | NO | libexpat1-dev |
expat |
expat-devel |
YES | XML parsing |
GTest | 1.5 | YES | libgtest-dev [1] |
gtest |
gtest-devel |
YES | Test suite |
Doxygen | any | NO | doxygen |
doxygen |
doxygen |
YES | Documentation |
Graphviz | any | NO | graphviz |
graphviz |
graphviz |
YES | Documentation |
libhidapi | ? | NO | libhidapi-dev |
hidapi |
hidapi-devel |
YES | Hardware wallet |
libusb | ? | NO | libusb-1.0-0-dev |
libusb |
libusbx-devel |
YES | Hardware wallet |
protoc | ? | NO | protobuf-compiler |
protobuf |
protobuf-compiler |
YES | Hardware wallet |
libudev | ? | No | libudev-dev |
systemd |
systemd-devel |
YES | Hardware wallet |
[1] On Debian/Ubuntu libgtest-dev
only includes sources and headers. You must
build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make && sudo mv libg* /usr/lib/
[2] libnorm-dev is needed if your zmq library was built with libnorm, and not needed otherwise
Install all dependencies at once on Debian/Ubuntu:
sudo apt update && sudo apt install build-essential cmake pkg-config libssl-dev libzmq3-dev libunbound-dev libsodium-dev libunwind8-dev liblzma-dev libreadline6-dev libldns-dev libexpat1-dev libpgm-dev qttools5-dev-tools libhidapi-dev libusb-1.0-0-dev libudev-dev libboost-chrono-dev libboost-date-time-dev libboost-filesystem-dev libboost-locale-dev libboost-program-options-dev libboost-regex-dev libboost-serialization-dev libboost-system-dev libboost-thread-dev ccache doxygen graphviz
Install all dependencies at once on macOS with the provided Brewfile:
brew update && brew bundle --file=contrib/brew/Brewfile
FreeBSD one liner for required to build dependencies
pkg install git gmake cmake pkgconf boost-libs libzmq4 libsodium
$ git clone https://github.com/sumoprojects/sumokoin
Sumokoin uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.
Install the dependencies (see the list above)
- On Ubuntu, essential dependencies can be installed with the following command:
sudo apt update && sudo apt install build-essential cmake pkg-config libboost-all-dev libssl-dev libzmq3-dev libunbound-dev libsodium-dev libunwind8-dev liblzma-dev libreadline6-dev libldns-dev libexpat1-dev doxygen graphviz libpgm-dev libhidapi-dev libusb-dev
Change to the root of the source code directory and build:
cd sumokoin
make
Optional: If your machine has several cores and enough memory, enable
parallel build by running make -j<number of threads>
instead of make
. For
this to be worthwhile, the machine should have one core and about 2GB of RAM
available per thread.
Note: The instructions above will compile the most stable release of the
Sumokoin software. If you would like to use and test the most recent software,
use git checkout master
. The master branch may contain updates that are
both unstable and incompatible with release software, though testing is always
encouraged.
The resulting executables can be found in build/release/bin
Add PATH="$PATH:$HOME/sumokoin/build/release/bin"
to .profile
Run Sumokoin with sumokoind --detach
Optional: build and run the test suite to verify the binaries:
make release-test
NOTE: core_tests
test may take a few hours to complete.
Optional: to build binaries suitable for debugging:
make debug
Optional: to build statically-linked binaries:
make release-static
Dependencies need to be built with -fPIC. Static libraries usually aren't, so you may have to build them yourself with -fPIC. Refer to their documentation for how to build them.
Optional: build documentation in doc/html
(omit HAVE_DOT=YES
if graphviz
is not installed):
HAVE_DOT=YES doxygen Doxyfile
Tested on a Raspberry Pi Zero with a clean install of minimal Raspbian Stretch (2017-09-07 or later) from https://www.raspberrypi.org/downloads/raspbian/. If you are using Raspian Jessie, please see note in the following section.
apt-get update && apt-get upgrade
to install all of the latest software
Install the dependencies for Sumokoin from the 'Debian' column in the table above.
Increase the system swap size:
sudo /etc/init.d/dphys-swapfile stop
sudo nano /etc/dphys-swapfile
CONF_SWAPSIZE=2048
sudo /etc/init.d/dphys-swapfile start
If using an external hard disk without an external power supply, ensure it gets enough power to avoid hardware issues when syncing, by adding the line "max_usb_current=1" to /boot/config.txt
Clone sumokoin and checkout most recent release version:
git clone https://github.com/sumoprojects/sumokoin.git
cd sumokoin
git checkout tags/v0.8.0.0
Build:
make release
Wait 4-6 hours
The resulting executables can be found in build/release/bin
Add PATH="$PATH:$HOME/sumokoin/build/release/bin"
to .profile
Run Sumokoin with sumokoind --detach
You may wish to reduce the size of the swap file after the build has finished, and delete the boost directory from your home directory
If you are using the older Raspbian Jessie image, compiling Sumokoin is a bit more complicated. The version of Boost available in the Debian Jessie repositories is too old to use with Sumokoin, and thus you must compile a newer version yourself. The following explains the extra steps, and has been tested on a Raspberry Pi 2 with a clean install of minimal Raspbian Jessie.
As before, apt-get update && apt-get upgrade
to install all of the latest software, and increase the system swap size
sudo /etc/init.d/dphys-swapfile stop
sudo nano /etc/dphys-swapfile
CONF_SWAPSIZE=2048
sudo /etc/init.d/dphys-swapfile start
Then, install the dependencies for Sumokoin except libunwind
and libboost-all-dev
Install the latest version of boost (this may first require invoking apt-get remove --purge libboost*
to remove a previous version if you're not using a clean install):
cd
wget https://sourceforge.net/projects/boost/files/boost/1.64.0/boost_1_64_0.tar.bz2
tar xvfo boost_1_64_0.tar.bz2
cd boost_1_64_0
./bootstrap.sh
sudo ./b2
Wait ~8 hours
sudo ./bjam cxxflags=-fPIC cflags=-fPIC -a install
Wait ~4 hours
From here, follow the general Raspberry Pi instructions from the "Clone sumokoin and checkout most recent release version" step.
Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.
Preparing the build environment
Download and install the MSYS2 installer, either the 64-bit or the 32-bit package, depending on your system.
Open the MSYS shell via the MSYS2 Shell
shortcut
Update packages using pacman:
pacman -Syu
Exit the MSYS shell using Alt+F4
Edit the properties for the MSYS2 Shell
shortcut changing "msys2_shell.bat" to "msys2_shell.cmd -mingw64" for 64-bit builds or "msys2_shell.cmd -mingw32" for 32-bit builds
Restart MSYS shell via modified shortcut and update packages again using pacman:
pacman -Syu
Install dependencies:
To build for 64-bit Windows:
pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost mingw-w64-x86_64-openssl mingw-w64-x86_64-zeromq mingw-w64-x86_64-libsodium mingw-w64-x86_64-hidapi mingw-w64-x86_64-unbound
To build for 32-bit Windows:
pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost mingw-w64-i686-openssl mingw-w64-i686-zeromq mingw-w64-i686-libsodium mingw-w64-i686-hidapi mingw-w64-i686-unbound
Open the MingW shell via MinGW-w64-Win64 Shell
shortcut on 64-bit Windows
or MinGW-w64-Win64 Shell
shortcut on 32-bit Windows. Note that if you are
running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.
Cloning
To git clone, run:
git clone https://github.com/sumoprojects/sumokoin.git
Building
Change to the cloned directory, run:
cd sumokoin
If you would like a specific version/tag, do a git checkout for that version. eg. 'v0.8.0.0'. If you don't care about the version and just want binaries from master, skip this step:
git checkout v0.8.0.0
If you are on a 64-bit system, run:
make release-static-win64
If you are on a 32-bit system, run:
make release-static-win32
The resulting executables can be found in build/release/bin
Optional: to build Windows binaries suitable for debugging on a 64-bit system, run:
make debug-static-win64
Optional: to build Windows binaries suitable for debugging on a 32-bit system, run:
make debug-static-win32
The resulting executables can be found in build/debug/bin
The project can be built from scratch by following instructions for Linux above(but use gmake
instead of make
).
If you are running Sumokoin in a jail, you need to add sysvsem="new"
to your jail configuration, otherwise lmdb will throw the error message: Failed to open lmdb environment: Function not implemented
.
You will need to add a few packages to your system. pkg_add cmake gmake zeromq libiconv boost
.
The doxygen
and graphviz
packages are optional and require the xbase set.
Running the test suite also requires py-requests
package.
Build sumokoin: env DEVELOPER_LOCAL_TOOLS=1 BOOST_ROOT=/usr/local gmake release-static
Note: you may encounter the following error, when compiling the latest version of sumokoin as a normal user:
LLVM ERROR: out of memory
c++: error: unable to execute command: Abort trap (core dumped)
Then you need to increase the data ulimit size to 2GB and try again: ulimit -d 2000000
Check that the dependencies are present: pkg_info -c libexecinfo boost-headers boost-libs protobuf readline libusb1 zeromq git-base pkgconf gmake cmake | more
, and install any that are reported missing, using pkg_add
or from your pkgsrc tree. Readline is optional but worth having.
Third-party dependencies are usually under /usr/pkg/
, but if you have a custom setup, adjust the "/usr/pkg" (below) accordingly.
Clone the sumokoin repository and checkout the most recent release as described above. Then build sumokoin: gmake BOOST_ROOT=/usr/pkg LDFLAGS="-Wl,-R/usr/pkg/lib" release
. The resulting executables can be found in build/NetBSD/[Release version]/Release/bin/
.
The default Solaris linker can't be used, you have to install GNU ld, then run cmake manually with the path to your copy of GNU ld:
mkdir -p build/release
cd build/release
cmake -DCMAKE_LINKER=/path/to/ld -D CMAKE_BUILD_TYPE=Release ../..
cd ../..
Then you can run make as usual.
By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:
make release-static-linux-x86_64
builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processorsmake release-static-linux-i686
builds binaries on Linux on x86_64 or i686 portable across POSIX systems on i686 processorsmake release-static-linux-armv8
builds binaries on Linux portable across POSIX systems on armv8 processorsmake release-static-linux-armv7
builds binaries on Linux portable across POSIX systems on armv7 processorsmake release-static-linux-armv6
builds binaries on Linux portable across POSIX systems on armv6 processorsmake release-static-win64
builds binaries on 64-bit Windows portable across 64-bit Windows systemsmake release-static-win32
builds binaries on 64-bit or 32-bit Windows portable across 32-bit Windows systemsYou can also cross-compile static binaries on Linux for Windows and macOS with the depends
system.
Read more at contrib/depends/README.md
make depends target=x86_64-linux-gnu
for 64-bit linux binaries.make depends target=x86_64-w64-mingw32
for 64-bit windows binaries.
python3 g++-mingw-w64-x86-64 wine1.6 bc
make depends target=x86_64-apple-darwin14
for macOS binaries.
cmake imagemagick libcap-dev librsvg2-bin libz-dev libbz2-dev libtiff-tools python-dev python-pip
, and pip install setuptools
make depends target=i686-linux-gnu
for 32-bit linux binaries.
g++-multilib bc
make depends target=i686-w64-mingw32
for 32-bit windows binaries.
python3 g++-mingw-w64-i686
make depends target=arm-linux-gnueabihf
for armv7 binaries.
g++-arm-linux-gnueabihf
make depends target=aarch64-linux-gnu
for armv8 binaries.
g++-aarch64-linux-gnu
make depends target=riscv64-linux-gnu
for RISC V 64 bit binaries.
g++-riscv64-linux-gnu
make depends target=x86_64-unknown-freebsd
for FreeBSD 64-bit binaries.
clang-8
make depends target=arm-linux-android
for 32bit android binariesmake depends target=aarch64-linux-android
for 64bit android binariesThe required packages are the names for each toolchain on apt. Depending on your distro, they may have different names.
Using depends
might also be easier to compile Sumokoin on Windows than using MSYS. Activate Windows Subsystem for Linux (WSL) with a distro (for example Ubuntu), install the apt build-essentials
and follow the depends
steps as depicted above.
The produced binaries still link libc dynamically. If the binary is compiled on a current distribution, it might not run on an older distribution with an older installation of libc. Passing -DBACKCOMPAT=ON
to cmake will make sure that the binary will run on systems having at least libc version 2.17.
The build places the binary in bin/
sub-directory within the build directory
from which cmake was invoked (repository root by default). To run in
foreground:
./bin/sumokoind
To list all available options, run ./bin/sumokoind --help
. Options can be
specified either on the command line or in a configuration file passed by the
--config-file
argument. To specify an option in the configuration file, add
a line with the syntax argumentname=value
, where argumentname
is the name
of the argument without the leading dashes, for example log-level=1
.
To run in background:
./bin/sumokoind --log-file sumokoind.log --detach
To run as a systemd service, copy
sumokoind.service to /etc/systemd/system/
and
sumokoind.conf to /etc/
. The example
service assumes that the user sumokoin
exists
and its home is the data directory specified in the example
config.
If you're on Mac, you may need to add the --max-concurrency 1
option to
sumo-wallet-cli, and possibly sumokoind, if you get crashes refreshing.
There is a new, still experimental, integration with Tor. The feature allows connecting over IPv4 and Tor simulatenously - IPv4 is used for relaying blocks and relaying transactions received by peers whereas Tor is used solely for relaying transactions received over local RPC. This provides privacy and better protection against surrounding node (sybil) attacks.
While Sumokoin isn't made to integrate with Tor, it can be used wrapped with torsocks, by setting the following configuration parameters and environment variables:
--p2p-bind-ip 127.0.0.1
on the command line or p2p-bind-ip=127.0.0.1
in
sumokoind.conf to disable listening for connections on external interfaces.--no-igd
on the command line or no-igd=1
in sumokoind.conf to disable IGD
(UPnP port forwarding negotiation), which is pointless with Tor.DNS_PUBLIC=tcp
or DNS_PUBLIC=tcp://x.x.x.x
where x.x.x.x is the IP of the
desired DNS server, for DNS requests to go over TCP, so that they are routed
through Tor. When IP is not specified, sumokoind uses the default list of
servers defined in src/common/dns_utils.cpp.TORSOCKS_ALLOW_INBOUND=1
to tell torsocks to allow sumokoind to bind to interfaces
to accept connections from the wallet. On some Linux systems, torsocks
allows binding to localhost by default, so setting this variable is only
necessary to allow binding to local LAN/VPN interfaces to allow wallets to
connect from remote hosts. On other systems, it may be needed for local wallets
as well.--detach
when running through torsocks with systemd, (see
utils/systemd/sumokoind.service for details).--untrusted-daemon
unless it is your own hidden service.Example command line to start sumokoind through Tor:
DNS_PUBLIC=tcp torsocks sumokoind --p2p-bind-ip 127.0.0.1 --no-igd
TAILS ships with a very restrictive set of firewall rules. Therefore, you need to add a rule to allow this connection too, in addition to telling torsocks to allow inbound connections. Full example:
sudo iptables -I OUTPUT 2 -p tcp -d 127.0.0.1 -m tcp --dport 19734 -j ACCEPT
DNS_PUBLIC=tcp torsocks ./sumokoind --p2p-bind-ip 127.0.0.1 --no-igd --rpc-bind-ip 127.0.0.1 \
--data-dir /home/amnesia/Persistent/your/directory/to/the/blockchain
As of June 2021, The full Sumokoin blockchain file is on about 22 GB. One can store a pruned blockchain, which is less than one fourth in size from the full blockchain size (June 2020 4.6 GB). A pruned blockchain can only serve part of the historical chain data to other peers, but is otherwise identical in functionality to the full blockchain. To use a pruned blockchain, it is best to start the initial sync with --pruned-blockchain. However, it is also possible to prune an existing blockchain using the sumo-blockchain-prune tool or using the --pruned-blockchain sumokoind option with an existing chain. If an existing chain exists, pruning will temporarily require disk space to store both the full and pruned blockchains.
This section contains general instructions for debugging failed installs or problems encountered with Sumokoin. First, ensure you are running the latest version built from the Github repo.
We generally use the tool gdb
(GNU debugger) to provide stack trace functionality, and ulimit
to provide core dumps in builds which crash or segfault.
gdb
in order to obtain a stack trace for a build that has stalled:Run the build.
Once it stalls, enter the following command:
gdb /path/to/sumokoind `pidof sumokoind`
Type thread apply all bt
within gdb in order to obtain the stack trace
Enter ulimit -c unlimited
on the command line to enable unlimited filesizes for core dumps
Enter echo core | sudo tee /proc/sys/kernel/core_pattern
to stop cores from being hijacked by other tools
Run the build.
When it terminates with an output along the lines of "Segmentation fault (core dumped)", there should be a core dump file in the same directory as sumokoind. It may be named just core
, or core.xxxx
with numbers appended.
You can now analyse this core dump with gdb
as follows:
gdb /path/to/sumokoind /path/to/dumpfile
Print the stack trace with bt
coredumpctl -1 gdb
Type gdb /path/to/sumokoind
Pass command-line options with --args
followed by the relevant arguments
Type run
to run sumokoind
There are two tools available:
Configure Sumokoin with the -D SANITIZE=ON cmake flag, eg:
cd build/debug && cmake -D SANITIZE=ON -D CMAKE_BUILD_TYPE=Debug ../..
You can then run the Sumokoin tools normally. Performance will typically halve.
Install valgrind and run as valgrind /path/to/sumokoind
. It will be very slow.
Instructions for debugging suspected blockchain corruption as per @HYC
There is an mdb_stat
command in the LMDB source that can print statistics about the database but it's not routinely built. This can be built with the following command:
cd ~/sumokoin/src/lmdb/db_drivers/liblmdb && make
The output of mdb_stat -ea <path to blockchain dir>
will indicate inconsistencies in the blocks, block_heights and block_info table.
The output of mdb_dump -s blocks <path to blockchain dir>
and mdb_dump -s block_info <path to blockchain dir>
is useful for indicating whether blocks and block_info contain the same keys.
These records are dumped as hex data, where the first line is the key and the second line is the data.
Because of the nature of the socket-based protocols that drive sumokoin, certain protocol weaknesses are somewhat unavoidable at this time. While these weaknesses can theoretically be fully mitigated, the effort required (the means) may not justify the ends. As such, please consider taking the following precautions if you are a sumokoin node operator:
sumokoind
on a "secured" machine. If operational security is not your forte, at a very minimum, have a dedicated a computer running sumokoind
and do not browse the web, use email clients, or use any other potentially harmful apps on your sumokoind
machine. Do not click links or load URL/MUA content on the same machine. Doing so may potentially exploit weaknesses in commands which accept "localhost" and "127.0.0.1".sumokoind
with --restricted-rpc
. This is a must.Certain blockchain "features" can be considered "bugs" if misused correctly. Consequently, please consider the following:
show_transfers
command.