superjax / inertial_sense_ros

DEPRECATED: Please see official ROS node on [inertialsense](https://github.com/inertialsense/inertial_sense_ros)
10 stars 26 forks source link

inertial_sense

A ROS wrapper for the InertialSense uINS3 RTK-GPS-INS and Dual GPS (GPS Compassing) sensor.

NOTICE:

To use this node, you will need to update firmware on your uINS to v1.7.3 release page. Download the appropriate .hex file and use the firmware_update ROS service to update the firmware

rosservice call /firmware_update /home/superjax/Download/IS_uINS-3_v1.7.3<...>.hex

Installation

This is a ROS package, with the InertialSenseSDK as a submodule, so just create a catkin workspace, clone this into the src folder, pull down the submodule and build

mkdir -p catkin_ws/src
cd catkin_ws/src
catkin_init_workspace
git clone https://inertialsense/inertial_sense_ros
cd inertial_sense
git submodule update --init --recursive
cd ../..
catkin_make

Running the Node

rosrun inertial_sense inertial_sense_node

Make sure that you are a member of the dailout group, or you won't have access to the serial port.

For changing parameter values and topic remapping from the command line using rosrun refer to the Remapping Arguments page. For setting vector parameters, use the following syntax:

rosparam set /inertial_sense_node/GPS_ref_lla "[40.25, -111.67, 1556.59]"
rosrun inertial_sense inertial_sense_node

For setting parameters and topic remappings from a launch file, refer to the Roslaunch for Larger Projects page, or the sample launch/test.launch file in this repository.

RTK

RTK (Realtime Kinematic) GPS requires two gps receivers, a base and a rover. The GPS observations from the base GPS are sent to the rover and the rover is able to calculate a much more accurate (+/- 3cm) relative position to the base. This requires a surveyed base position and a relatively high-bandwidth connection to the rover. If using a uINS with two GPS receviers, GPS 1 is used for base corrections. The RTK functionality in this node is performed by setting parameters shown below.

It is important that the base position be accurate. There are two primary methods for getting a surveyed base position.

  1. Find the location of the base on Google Maps (quick and easy, not as accurate)
  2. Put the base into rover mode with a 3rd-party base station such as a NTRIP caster. Once the base has RTK fix, the absolute position of the base is accurate to within 3 cm. Averaging this position over time is usually the most accurate way to get a base position, but takes more effort.

Once the base position has been identified, set the refLLA of the base uINS to your surveyed position to indicate a surveyed base position.

Dual GNSS (GPS Compassing)

GPS Compassing is supported on units with two GPS receivers. It also requires a very precise measurement of the locations of both GPS antennas relative to the uINS (+/- 1cm). If you want to use the Dual GNSS mode, you must set the dual_GNSS parameter, and specify both the GPS_ant1_xyz and GPS_ant2_xyz vector parameters.

Dual GNSS uses the onboard RTK engine, so it is currently impossible for a uINS to be configured as both an RTK rover and for dual GNSS compassing simultaneously. It is possible to provide base corrections while also acting in dual GNSS mode.

Time Stamps

If GPS is available, all header timestamps are calculated with respect to the GPS clock but are translated into UNIX time to be consistent with the other topics in a ROS network. If GPS is unvailable, then a constant offset between uINS time and system time is estimated during operation and is applied to IMU and INS message timestamps as they arrive. There is often a small drift in these timestamps (on the order of a microsecond per second), due to variance in measurement streams and difference between uINS and system clocks, however this is more accurate than stamping the measurements with ROS time as they arrive.

In an ideal setting, there should be no jump in timestamps when GPS is first acquired, because the timestamps should be identical, however, due to inaccuracies in system time, there will likely be a small jump in message timestamps after the first GPS fix.

Topics

Topics are enabled and disabled using parameters. By default, only the ins topic is published to save processor time in serializing unecessary messages.

Parameters

Topic Configuration

RTK Configuration

Sensor Configuration

ASCII Output Configuration

Services