svip-lab / AS-MLP

[ICLR'22] This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".
https://arxiv.org/pdf/2107.08391.pdf
MIT License
124 stars 10 forks source link

AS-MLP architecture for Image Classification

This repo is the official implementation of our ICLR2022 paper "AS-MLP: An Axial Shifted MLP Architecture for Vision" (arXiv).

Model Zoo

Image Classification on ImageNet-1K

Network Resolution Top-1 (%) Params FLOPs Throughput (image/s) model
AS-MLP-T 224x224 81.3 28M 4.4G 1047 onedrive
AS-MLP-S 224x224 83.1 50M 8.5G 619 onedrive
AS-MLP-B 224x224 83.3 88M 15.2G 455 onedrive

Usage

Install

git clone https://github.com/svip-lab/AS-MLP
cd AS-MLP
conda create -n asmlp python=3.7 -y
conda activate asmlp
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
pip install timm==0.3.2
pip install cupy-cuda101
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8

Evaluation

To evaluate a pre-trained AS-MLP on ImageNet val, run:

bash train_scripts/test.sh

Training from scratch

To train a AS-MLP on ImageNet from scratch, run:

bash train_scripts/train.sh

You can easily reproduce our results. Enjoy!

Throughput

To measure the throughput, run:

bash train_scripts/get_throughput.sh

Citation

If this project is helpful for you, you can cite our paper:

@InProceedings{Lian_2021_ASMLP,
    title={AS-MLP: An Axial Shifted MLP Architecture for Vision},
    author={Lian, Dongze and Yu, Zehao and Sun, Xing and Gao, Shenghua},
    booktitle={International Conference on Learning Representations (ICLR)},
    year={2022}
}

Other Links

Object Detection and Instance Segmentation: See AS-MLP for Object Detection.

Semantic Segmentation: See AS-MLP for Semantic Segmentation.

Acknowledgement

The code is built upon Swin-Transformer, the cuda kernel is modified from Involution.