syguan96 / NeuroFluid

[ICML 2022] NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields
83 stars 10 forks source link

NeuroFluid

Code repository for this paper:
NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields.
Shanyan Guan, Huayu Deng, Yunbo Wang, Xiaokang Yang
ICML 2022
[Paper] [Project Page]

Please cite our paper if you find this code useful:

@inproceedings{guan2022neurofluid,
  title={NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields},
  author={Guan, Shanyan and Deng, Huayu and Wang, Yunbo and Yang, Xiaokang},
  booktitle={ICML},
  year={2022}
}

Dependencies

NeuroFluid is implemented and tested on Ubuntu 18.04 with python == 3.7 and cuda == 11.1. To run NeuroFluid, please install dependencies as follows:

  1. Create an environment
    conda create -n fluid-env python=3.7
    conda activate fluid-env
  2. Install Open3D.
    git clone https://github.com/isl-org/Open3D-ML.git && cd Open3D-ML && git checkout c461790869257e851ae7f035585b878df73bc093
    pip install open3d==0.15.2
    pip install -r requirements.txt
    pip install -r requirements-torch-cuda.txt
  3. Install Pytorch3D
    conda install -c fvcore -c iopath -c conda-forge fvcore iopath
    conda install -c bottler nvidiacub
    wget -c https://github.com/facebookresearch/pytorch3d/archive/refs/tags/v0.6.1.tar.gz
    tar -xf v0.6.1.tar.gz && cd pytorch3d-0.6.1 && pip install -e .
  4. install other dependencies
    pip install -r requirements.txt

Generate data

See this guide to generate fluid data.

Running the pretrained model

Run the training script

  1. Warm-up stage

    CUDA_VISIBLE_DEVICES=3 python train_renderer.py --expdir exps/watercube --expname scale-1.0/warmup --dataset watercube --config configs/watercube_warmup.yaml 
  2. End2end stage

    CUDA_VISIBLE_DEVICES=0 python train_e2e.py --expdir exps/watercube --expname scale-1.0/e2e --dataset watercube --config configs/watercube_e2e.yaml 

Fetch data

Download dataset and models from this link.

Acknowledgement

The implementation of transition model is borrowed from DeepLagrangianFluids. Please consider cite their paper if you use their code snippet:

@inproceedings{Ummenhofer2020Lagrangian,
        title     = {Lagrangian Fluid Simulation with Continuous Convolutions},
        author    = {Benjamin Ummenhofer and Lukas Prantl and Nils Thuerey and Vladlen Koltun},
        booktitle = {International Conference on Learning Representations},
        year      = {2020},
}

We refer to nerf_pl to implement our renderer. Thank D-NeRF for providing the script of computing PSNR/SSIM/LPIPS.