Code repository for this paper:
NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields.
Shanyan Guan, Huayu Deng, Yunbo Wang†, Xiaokang Yang
ICML 2022
[Paper] [Project Page]
Please cite our paper if you find this code useful:
@inproceedings{guan2022neurofluid,
title={NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields},
author={Guan, Shanyan and Deng, Huayu and Wang, Yunbo and Yang, Xiaokang},
booktitle={ICML},
year={2022}
}
NeuroFluid is implemented and tested on Ubuntu 18.04 with python == 3.7 and cuda == 11.1. To run NeuroFluid, please install dependencies as follows:
conda create -n fluid-env python=3.7
conda activate fluid-env
git clone https://github.com/isl-org/Open3D-ML.git && cd Open3D-ML && git checkout c461790869257e851ae7f035585b878df73bc093
pip install open3d==0.15.2
pip install -r requirements.txt
pip install -r requirements-torch-cuda.txt
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
wget -c https://github.com/facebookresearch/pytorch3d/archive/refs/tags/v0.6.1.tar.gz
tar -xf v0.6.1.tar.gz && cd pytorch3d-0.6.1 && pip install -e .
pip install -r requirements.txt
See this guide to generate fluid data.
Evaluate NeuroFluid:
python eval_e2e.py --resume_from $MODEL_PATH --dataset DATASET_NAME
DATASET_NAME is one element of [bunny, watercube, watersphere, honeycone]. To compute PSNR/SSIM/LPIPS results, run utils/evaluate_images.ipynb
Evaluate the transition model
python eval_transmodel.py --resume_from $MODEL_PATH
Evaluate the renderer
python eval_renderer.py --resume_from $MODEL_PATH --dataset DATASET_NAME
DATASET_NAME is one element of [bunny, watercube, watersphere, honeycone].
Warm-up stage
CUDA_VISIBLE_DEVICES=3 python train_renderer.py --expdir exps/watercube --expname scale-1.0/warmup --dataset watercube --config configs/watercube_warmup.yaml
End2end stage
CUDA_VISIBLE_DEVICES=0 python train_e2e.py --expdir exps/watercube --expname scale-1.0/e2e --dataset watercube --config configs/watercube_e2e.yaml
Download dataset and models from this link.
The implementation of transition model is borrowed from DeepLagrangianFluids. Please consider cite their paper if you use their code snippet:
@inproceedings{Ummenhofer2020Lagrangian,
title = {Lagrangian Fluid Simulation with Continuous Convolutions},
author = {Benjamin Ummenhofer and Lukas Prantl and Nils Thuerey and Vladlen Koltun},
booktitle = {International Conference on Learning Representations},
year = {2020},
}
We refer to nerf_pl to implement our renderer. Thank D-NeRF for providing the script of computing PSNR/SSIM/LPIPS.