synbol / Awesome-Parameter-Efficient-Transfer-Learning

Collection of awesome parameter-efficient fine-tuning resources.
485 stars 11 forks source link
awesome-list computer-vision deep-learning parameter-efficient-fine-tuning pre-trained-models survey transfer-learning transformer

๐“๐”€๐“ฎ๐“ผ๐“ธ๐“ถ๐“ฎ ๐“Ÿ๐“ช๐“ป๐“ช๐“ถ๐“ฎ๐“ฝ๐“ฎ๐“ป-๐“”๐“ฏ๐“ฏ๐“ฒ๐“ฌ๐“ฒ๐“ฎ๐“ท๐“ฝ ๐“ฃ๐“ป๐“ช๐“ท๐“ผ๐“ฏ๐“ฎ๐“ป ๐“›๐“ฎ๐“ช๐“ป๐“ท๐“ฒ๐“ท๐“ฐ

![GitHub stars](https://img.shields.io/github/stars/synbol/Awesome-Parameter-Efficient-Transfer-Learning.svg?color=red&style=for-the-badge) ![GitHub forks](https://img.shields.io/github/forks/synbol/Awesome-Parameter-Efficient-Transfer-Learning.svg?style=for-the-badge) ![GitHub activity](https://img.shields.io/github/last-commit/synbol/Awesome-Parameter-Efficient-Transfer-Learning?color=yellow&style=for-the-badge) ![GitHub issues](https://img.shields.io/github/issues/synbol/Awesome-Parameter-Efficient-Transfer-Learning?style=for-the-badge) [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) [![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/Naereen/StrapDown.js/graphs/commit-activity)

๐“ ๐“ฌ๐“ธ๐“ต๐“ต๐“ฎ๐“ฌ๐“ฝ๐“ฒ๐“ธ๐“ท ๐“ธ๐“ฏ ๐“ป๐“ฎ๐“ผ๐“ธ๐“พ๐“ป๐“ฌ๐“ฎ๐“ผ ๐“ธ๐“ท ๐“น๐“ช๐“ป๐“ช๐“ถ๐“ฎ๐“ฝ๐“ฎ๐“ป-๐“ฎ๐“ฏ๐“ฏ๐“ฒ๐“ฌ๐“ฒ๐“ฎ๐“ท๐“ฝ ๐“ฝ๐“ป๐“ช๐“ท๐“ผ๐“ฏ๐“ฎ๐“ป ๐“ต๐“ฎ๐“ช๐“ป๐“ท๐“ฒ๐“ท๐“ฐ.

โญ Citation

If you find our survey and repository useful for your research, please cite it below:


@article{xin2024parameter,
  title={Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey},
  author={Xin, Yi and Luo, Siqi and Zhou, Haodi and Du, Junlong and Liu, Xiaohong and Fan, Yue and Li, Qing and Du, Yuntao},
  journal={arXiv preprint arXiv:2402.02242},
  year={2024}
}

๐Ÿ”ฅ News

๐Ÿ“š Table of Contents

๐Ÿ“ Introduction

๐Ÿ’ฌ Keywords

The abbreviation of the work.

The main explored task/application of the work.

Other important information of the work.

๐ŸŒ Papers

Addition-based Tuning

Adapter Tuning

Prompt Tuning

Prefix Tuning

Side Tuning

Partial-based Tuning

Specification Tuning

Reparameter Tuning

Unified Tuning

๐ŸŽฏ Datasets of Visual PETL

Name Paper Link Notes
FGVC Visual prompt tuning Link FGVC consists of 5 benchmarked Fine-Grained Visual Classification tasks.
VTAB-1k A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark Link VTAB-1k consists of 19 diverse visual classification tasks.
Kinetics-400 The kinetics human action video dataset. Link Video Action Recognition
SSv2 The โ€œsomething somethingโ€ Video Database for Learning and Evaluating Visual Common Sense Link Video Action Recognition
HMDB51 HMDB:ALargeVideo Database for Human Motion Recognition Link Video Action Recognition
Diving-48 RESOUND: Towards Action Recognition without Representation Bias Link Video Action Recognition
UCF-101 UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild Link Video Action Recognition
MSCOCO Microsoft COCO: Common Objects in Context Link Instance Segmentation
ADE20K Semantic Understanding of Scenes through the ADE20K Dataset Link Semantic Segmentation
PASCALVOC The Pascal Visual Object Classes Challenge: A Retrospective Link Semantic Segmentation

๐Ÿง’ Contribution

:clap: Thanks to the above contributors for this excellent work๏ผ