Train function f in source domain(SVHN), first
CUDA_VISIBLE_DEVICES=x python main_recog.py --dataset svhn --dataroot /path/to/svhn/extra/ --valDataroot /path/to/svhn/test/ --exp recog_svhn
And then, train DTN
CUDA_VISIBLE_DEVICES=x python main_dtnetgan.py --datasetA svhn --datarootA /path/to/svhn/extra/ --valDatarootA /path/to/svhn/test/ --datasetB mnist --datarootB /path/to/mnist/train/ --valDatarootB /path/to/test/ --netE /path/to/previously/trained/model/netE_epoch_xx.pth --exp S2M --crossentropy
Randomly selected samples in source domain
Domain transferred samples from corresponding inputs
CUDA_VISIBLE_DEVICES=x python main_recog.py --dataset mnist --dataroot /path/to/mnist/train/ --valDataroot /path/to/mnist/test/ --exp recog_mnist
CUDA_VISIBLE_DEVICES=x python main_dtnetgan.py --datasetA mnist --datarootA /path/to/mnist/train/ --valDatarootA /path/to/mnist/test/ --datasetB svhn --datarootB /path/to/svhn/extra/ --valDatarootB /path/to/svhn/test/ --netE /path/to/pretrained/model/netE_epoch_xx.pth --exp M2S