Probspace - 宗教画テーマの分類
https://prob.space/competitions/religious_art
Run
$ ./scripts/docker/run.sh
$ ./scripts/docker/exec.sh
root@xxxxx:/workspace# venv-acitvate
(venv) root@xxxxx:/workspace# ./scrirpts/run.sh expXXX
Jupyter
$ ./scripts/docker/run.sh
$ ./scripts/docker/exec.sh
root@xxxxx:/workspace# venv-acitvate
(venv) root@xxxxx:/workspace# ./scripts/jupyter.sh
Submission
Late Sub
Name |
CV |
Public Score |
Private Score |
Base |
Description |
submission_036.csv |
0.66055 |
0.625 |
0.630 |
exp034 |
stacking: exp008, exp010, exp012, exp015, exp018 (2nd stage: vote) |
Result
Name |
CV |
Public Score |
Private Score |
Base |
Description |
submission_035.csv |
------- |
----- |
- |
- |
stacking: exp018, exp015, exp012, exp010 (2nd stage) |
submission_034.csv |
0.66055 |
0.625 |
0.633 |
exp027 |
stacking: exp018, exp015, exp012, exp010 (weighten with cv score) |
submission_033.csv |
0.56061 |
0.578 |
0.607 |
exp022 |
Larger image size |
submission_032.csv |
0.65749 |
0.625 |
0.637 |
- |
stacking: exp028, exp027, exp026 (average) |
submission_031.csv |
0.65291 |
0.641 |
0.630 |
- |
stacking: exp028, exp027, exp026, exp025 (average) |
submission_030.csv |
0.64220 |
0.641 |
0.624 |
- |
stacking: exp028, exp027, exp026, exp025, exp024 (average) |
submission_029.csv |
0.63914 |
0.625 |
0.624 |
- |
stacking: exp028, exp027, exp026, exp025, exp024, exp023 (average) |
submission_028.csv |
0.64832 |
0.609 |
- |
- |
same as submission_021 |
submission_027.csv |
0.66055 |
0.656 |
- |
- |
same as submission_020 |
submission_026.csv |
0.65291 |
0.641 |
0.630 |
- |
same as submission_019 |
submission_025.csv |
0.61927 |
0.656 |
- |
- |
same as submission_016 |
submission_024.csv |
0.61927 |
0.609 |
- |
- |
same as submission_013 |
submission_023.csv |
0.59786 |
0.625 |
0.612 |
- |
same as submission_011 |
submission_022.csv |
------- |
----- |
- |
exp018 |
CutMix |
submission_021.csv |
0.64832 |
0.609 |
0.630 |
- |
stacking: exp012, exp015, exp018 (average) |
submission_020.csv |
0.66055 |
0.656 |
0.635 |
- |
stacking: exp010, exp012, exp015, exp018 (average) |
submission_019.csv |
0.65291 |
0.656 |
0.630 |
- |
stacking: exp008, exp010, exp012, exp015, exp018 (average) |
submission_018.csv |
0.64394 |
0.609 |
0.640 |
exp017 |
leak fix (avoid evaluating psuedo labeled dataset) |
submission_017.csv |
0.72126 |
0.578 |
0.635 |
exp015 |
psuedo labeling |
submission_016.csv |
0.61927 |
0.656 |
0.619 |
- |
stacking: exp008, exp010, exp012, exp015 (average) |
submission_015.csv |
0.60550 |
0.609 |
0.630 |
exp014 |
resnext50 -> resnext101 |
submission_014.csv |
0.59939 |
0.562 |
0.612 |
exp012 |
larger image_size, more epochs |
submission_013.csv |
0.61927 |
0.609 |
0.619 |
- |
stacking: exp008, exp010, exp012 (average) |
submission_012.csv |
0.60550 |
0.609 |
0.594 |
exp008 |
resnext50, more augmentations |
submission_011.csv |
0.59786 |
0.625 |
0.612 |
- |
stacking: exp008, exp010 (average) |
submission_010.csv |
0.58716 |
0.578 |
0.582 |
exp008 |
resnest50 |
submission_009.csv |
0.50765 |
- |
- |
exp008 |
mobilenetv3 |
submission_008.csv |
0.57034 |
0.594 |
0.561 |
exp006 |
image サイズを大きく |
submission_007.csv |
0.56422 |
0.484 |
0.497 |
exp006 |
efficient_b2 に変更 |
submission_006.csv |
0.55657 |
0.516 |
0.545 |
exp005 |
損失関数に weights を追加(少数クラスほど weight を大きく) |
submission_005.csv |
0.50917 |
- |
- |
exp002 |
model を resnet50 に変更 |
submission_004.csv |
0.48165 |
0.484 |
0.547 |
exp002 |
重複画像のラベルデータを後処理で埋める |
submission_003.csv |
0.46636 |
- |
- |
exp002 |
輝度(Brightness)の統一 |
submission_002.csv |
0.48165 |
0.484 |
0.545 |
- |
- |
Probing
y |
CV |
train sample size |
Public |
public sample size |
0 |
0.092 |
60 |
0.078 |
5 |
1 |
0.064 |
42 |
0.078 |
5 |
2 |
0.202 |
132 |
0.156 |
10 |
3 |
0.064 |
42 |
0.109 |
7 |
4 |
0.064 |
42 |
0.078 |
5 |
5 |
0.092 |
60 |
0.047 |
3 |
6 |
0.073 |
48 |
0.078 |
5 |
7 |
0.046 |
30 |
0.062 |
4 |
8 |
0.046 |
30 |
0.031 |
2 |
9 |
0.101 |
66 |
0.078 |
5 |
10 |
0.046 |
30 |
0.047 |
3 |
11 |
0.064 |
42 |
0.094 |
6 |
12 |
0.046 |
30 |
0.062 |
4 |