.. image:: https://readthedocs.org/projects/thepipe/badge/?version=latest :target: https://thepipe.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status
.. image:: https://api.codacy.com/project/badge/Grade/20a35727ae364e08845b60bdeb4b233a :alt: Codacy Badge :target: https://www.codacy.com/app/tamasgal/thepipe?utm_source=github.com&utm_medium=referral&utm_content=tamasgal/thepipe&utm_campaign=Badge_Grade
.. image:: https://travis-ci.org/tamasgal/thepipe.svg?branch=master :alt: Travis-CI Build Status :target: https://travis-ci.org/tamasgal/thepipe
.. image:: http://codecov.io/github/tamasgal/thepipe/coverage.svg?branch=master :alt: Test-coverage :target: http://codecov.io/github/tamasgal/thepipe?branch=master
.. image:: https://img.shields.io/pypi/v/thepipe.svg?style=flat :alt: PyPI Package latest release :target: https://pypi.python.org/pypi/thepipe
A simplistic, general purpose pipeline framework, which can easily be integrated into existing (analysis) chains and workflows.
thepipe
can be installed via pip
::
pip install thepipe
Provenance().outfile
to dump it upon
program termination)Module
or bare python functionsBlob
which adds some visual candy and error reporting)self.log()
and self.cprint()
in
Modules
)Here is a basic example how to create a pipeline, add some modules to it, pass some parameters and drain the pipeline.
Note that pipeline modules can either be vanilla (univariate) Python functions
or Classes which derive from thepipe.Module
.
.. code-block:: python
import thepipe as tp
class AModule(tp.Module):
def configure(self):
self.cprint("Configuring AModule")
self.max_count = self.get("max_count", default=23)
self.index = 0
def process(self, blob):
self.cprint("This is cycle #%d" % self.index)
blob['index'] = self.index
self.index += 1
if self.index > self.max_count:
self.log.critical("That's enough...")
raise StopIteration
return blob
def finish(self):
self.cprint("I'm done!")
def a_function_based_module(blob):
print("Here is the blob:")
print(blob)
return blob
pipe = tp.Pipeline()
pipe.attach(AModule, max_count=5) # pass any parameters to the module
pipe.attach(a_function_based_module)
pipe.drain() # without arguments it will drain until a StopIteration is raised
This will produce the following output:
.. code-block:: shell
2020-05-26 12:43:12 ++ AModule: Configuring AModule
Pipeline and module initialisation took 0.001s (CPU 0.001s).
2020-05-26 12:43:12 ++ AModule: This is cycle #0
Here is the blob:
Blob (1 entries):
'index' => 0
2020-05-26 12:43:12 ++ AModule: This is cycle #1
Here is the blob:
Blob (1 entries):
'index' => 1
2020-05-26 12:43:12 ++ AModule: This is cycle #2
Here is the blob:
Blob (1 entries):
'index' => 2
2020-05-26 12:43:12 ++ AModule: This is cycle #3
Here is the blob:
Blob (1 entries):
'index' => 3
2020-05-26 12:43:12 ++ AModule: This is cycle #4
Here is the blob:
Blob (1 entries):
'index' => 4
2020-05-26 12:43:12 ++ AModule: This is cycle #5
2020-05-26 12:43:12 CRITICAL ++ AModule: That's enough...
2020-05-26 12:43:12 ++ AModule: I'm done!
============================================================
5 cycles drained in 0.001284s (CPU 0.001475s). Memory peak: 27.01 MB
wall mean: 0.000070s medi: 0.000052s min: 0.000042s max: 0.000122s std: 0.000031s
CPU mean: 0.000070s medi: 0.000052s min: 0.000042s max: 0.000124s std: 0.000032s