Platform | CI Status |
---|---|
Linux (Focal) | |
Windows | |
Wheels |
tesseract_python
contains Python wrappers for the Tesseract robot motion planner, generated using SWIG. These wrappers
contain most of the Tesseract functionality, including scene loading and management (URDF,SRDF, meshes), collision
checking (Bullet, FCL), kinematics (KDL, OPW, UR), planning (OMPL, Descartes, TrajOpt), and visualization
(tesseract_viewer_python)
Standalone packages are provided on PyPi (pip install) for Windows and Linux, containing all the native dependencies for Python 3.7+.
The Tesseract Python package is developed and maintained by Wason Technology, LLC.
Note that these are low level wrappers. The lifecycle of objects follow the underlying C++ objects, meaning that the target of C++ references may be destroyed before the reference, leading to a memory error. These wrappers do not attempt to change the memory lifecycle of the underlying C++ objects.
See https://tesseract-robotics.github.io/tesseract_python/ for documentation.
Standalone packages are provided on PyPi (pip install) for Windows and Linux, containing Tesseract, Tesseract Planning, andall the native dependencies for Python 3.7+. These packages have been tested on Windows 10, Ubuntu 20.04, and Ubuntu 22.04, but should work on any relatively recent x64 Windows or Linux operating system. Packages are available for Python 3.7 - 3.11.
To install on Windows:
python -m pip install tesseract-robotics tesseract-robotics-viewer
To install on Ubuntu 20.04 and Ubuntu 22.04:
sudo apt install python3-pip python3-numpy
# The supplied version of pip on Ubuntu 20.04 is too old for manylinux_2_31, upgrade pip
python3 -m pip install -U pip
python3 -m pip install --user tesseract_robotics tesseract_robotics_viewer
ABB Tesseract viewer plan and viewer example:
Install tesseract_robotics
and tesseract_robotics_viewer
as shown in Installation section.
Clone tesseract
, tesseract_planning
, and tesseract_python
repositories to retrieve example assets. This is not
necessary if the example assets are not used.
git clone --depth=1 https://github.com/tesseract-robotics/tesseract.git
git clone --depth=1 https://github.com/tesseract-robotics/tesseract_planning.git
git clone --depth=1 https://github.com/tesseract-robotics/tesseract_python.git
Set the TESSERACT_RESOURCE_PATH
and TESSERACT_TASK_COMPOSER_CONFIG_FILE
environmental variables so the example
can find required resources:
Linux:
export TESSERACT_RESOURCE_PATH=`pwd`/tesseract
export TESSERACT_TASK_COMPOSER_CONFIG_FILE=`pwd`/tesseract_planning/tesseract_task_composer/config/task_composer_plugins_no_trajopt_ifopt.yaml
Windows:
set TESSERACT_RESOURCE_PATH=%CD%/tesseract
set TESSERACT_TASK_COMPOSER_CONFIG_FILE=%CD%/tesseract_planning/tesseract_task_composer/config/task_composer_plugins_no_trajopt_ifopt.yaml
Now run the example!
Windows:
cd tesseract_python\examples
python tesseract_planning_example_composer.py
Linux:
cd tesseract_python/examples
python3 tesseract_planning_example_composer.py
And point a modern browser to http://localhost:8000
to see the animation!
Example source:
import re
import traceback
import os
import numpy as np
import numpy.testing as nptest
from tesseract_robotics.tesseract_common import GeneralResourceLocator
from tesseract_robotics.tesseract_environment import Environment
from tesseract_robotics.tesseract_common import FilesystemPath, Isometry3d, Translation3d, Quaterniond, \
ManipulatorInfo, AnyPoly, AnyPoly_wrap_double
from tesseract_robotics.tesseract_command_language import CartesianWaypoint, WaypointPoly, \
MoveInstructionType_FREESPACE, MoveInstruction, InstructionPoly, StateWaypoint, StateWaypointPoly, \
CompositeInstruction, MoveInstructionPoly, CartesianWaypointPoly, ProfileDictionary, \
AnyPoly_as_CompositeInstruction, CompositeInstructionOrder_ORDERED, DEFAULT_PROFILE_KEY, \
AnyPoly_wrap_CompositeInstruction, DEFAULT_PROFILE_KEY, JointWaypoint, JointWaypointPoly, \
InstructionPoly_as_MoveInstructionPoly, WaypointPoly_as_StateWaypointPoly, \
MoveInstructionPoly_wrap_MoveInstruction, StateWaypointPoly_wrap_StateWaypoint, \
CartesianWaypointPoly_wrap_CartesianWaypoint, JointWaypointPoly_wrap_JointWaypoint
from tesseract_robotics.tesseract_task_composer import TaskComposerPluginFactory, PlanningTaskComposerProblem, \
TaskComposerDataStorage, TaskComposerContext
from tesseract_robotics_viewer import TesseractViewer
# Run example FreespacePipeline planner
OMPL_DEFAULT_NAMESPACE = "OMPLMotionPlannerTask"
TRAJOPT_DEFAULT_NAMESPACE = "TrajOptMotionPlannerTask"
task_composer_filename = os.environ["TESSERACT_TASK_COMPOSER_CONFIG_FILE"]
# Initialize the resource locator and environment
locator = GeneralResourceLocator()
abb_irb2400_urdf_package_url = "package://tesseract_support/urdf/abb_irb2400.urdf"
abb_irb2400_srdf_package_url = "package://tesseract_support/urdf/abb_irb2400.srdf"
abb_irb2400_urdf_fname = FilesystemPath(locator.locateResource(abb_irb2400_urdf_package_url).getFilePath())
abb_irb2400_srdf_fname = FilesystemPath(locator.locateResource(abb_irb2400_srdf_package_url).getFilePath())
t_env = Environment()
# locator_fn must be kept alive by maintaining a reference
assert t_env.init(abb_irb2400_urdf_fname, abb_irb2400_srdf_fname, locator)
# Fill in the manipulator information. This is used to find the kinematic chain for the manipulator. This must
# match the SRDF, although the exact tcp_frame can differ if a tool is used.
manip_info = ManipulatorInfo()
manip_info.tcp_frame = "tool0"
manip_info.manipulator = "manipulator"
manip_info.working_frame = "base_link"
# Create a viewer and set the environment so the results can be displayed later
viewer = TesseractViewer()
viewer.update_environment(t_env, [0,0,0])
# Set the initial state of the robot
joint_names = ["joint_%d" % (i+1) for i in range(6)]
viewer.update_joint_positions(joint_names, np.array([1,-.2,.01,.3,-.5,1]))
# Start the viewer
viewer.start_serve_background()
# Set the initial state of the robot
t_env.setState(joint_names, np.ones(6)*0.1)
# Create the input command program waypoints
wp1 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,-0.3,1.455) * Quaterniond(0.70710678,0,0.70710678,0))
wp2 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,0.3,1.455) * Quaterniond(0.70710678,0,0.70710678,0))
wp3 = CartesianWaypoint(Isometry3d.Identity() * Translation3d(0.8,0.5,1.455) * Quaterniond(0.70710678,0,0.70710678,0))
# Create the input command program instructions. Note the use of explicit construction of the CartesianWaypointPoly
# using the *_wrap_CartesianWaypoint functions. This is required because the Python bindings do not support implicit
# conversion from the CartesianWaypoint to the CartesianWaypointPoly.
start_instruction = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp1), MoveInstructionType_FREESPACE, "DEFAULT")
plan_f1 = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp2), MoveInstructionType_FREESPACE, "DEFAULT")
plan_f2 = MoveInstruction(CartesianWaypointPoly_wrap_CartesianWaypoint(wp3), MoveInstructionType_FREESPACE, "DEFAULT")
# Create the input command program. Note the use of *_wrap_MoveInstruction functions. This is required because the
# Python bindings do not support implicit conversion from the MoveInstruction to the MoveInstructionPoly.
program = CompositeInstruction("DEFAULT")
program.setManipulatorInfo(manip_info)
program.appendMoveInstruction(MoveInstructionPoly_wrap_MoveInstruction(start_instruction))
program.appendMoveInstruction(MoveInstructionPoly_wrap_MoveInstruction(plan_f1))
# program.appendMoveInstruction(MoveInstructionPoly(plan_f2))
# Create the task composer plugin factory and load the plugins
config_path = FilesystemPath(task_composer_filename)
factory = TaskComposerPluginFactory(config_path)
# Create the task composer node. In this case the FreespacePipeline is used. Many other are available.
task = factory.createTaskComposerNode("FreespacePipeline")
# Get the output keys for the task
output_key = task.getOutputKeys()[0]
# Create a profile dictionary. Profiles can be customized by adding to this dictionary and setting the profiles
# in the instructions.
profiles = ProfileDictionary()
# Create an AnyPoly containing the program. This explicit step is required because the Python bindings do not
# support implicit conversion from the CompositeInstruction to the AnyPoly.
program_anypoly = AnyPoly_wrap_CompositeInstruction(program)
# Create the task problem and input
task_planning_problem = PlanningTaskComposerProblem(t_env, profiles)
task_planning_problem.input = program_anypoly
# Create an executor to run the task
task_executor = factory.createTaskComposerExecutor("TaskflowExecutor")
# Run the task and wait for completion
future = task_executor.run(task.get(), task_planning_problem)
future.wait()
# Retrieve the output, converting the AnyPoly back to a CompositeInstruction
results = AnyPoly_as_CompositeInstruction(future.context.data_storage.getData(output_key))
# Display the output
# Print out the resulting waypoints
for instr in results:
assert instr.isMoveInstruction()
move_instr1 = InstructionPoly_as_MoveInstructionPoly(instr)
wp1 = move_instr1.getWaypoint()
assert wp1.isStateWaypoint()
wp = WaypointPoly_as_StateWaypointPoly(wp1)
print(f"Joint Positions: {wp.getPosition().flatten()} time: {wp.getTime()}")
# Update the viewer with the results to animate the trajectory
# Open web browser to http://localhost:8000 to view the results
viewer.update_trajectory(results)
viewer.plot_trajectory(results, manip_info)
input("press enter to exit")
Building the tesseract_python package is complicated and not recommended for novice users. See the wheels.yml workflow for details on how to build the packages and all dependencies.