testinprod-io / op-erigon

Optimism implementation on the efficiency frontier
https://op-erigon.testinprod.io
GNU Lesser General Public License v3.0
87 stars 15 forks source link
blockchain erigon ethereum go optimism

Optimistic Erigon

CI Integration tests

A fork of Erigon that supports the execution engine of OP stack. Check out the fork status here: https://op-erigon.testinprod.io

testinprod-io/erigon-lib has minimal backwards-compatible changes to add Optimism engine-api fields on the op-erigon branch.

testinprod-io/erigon-interfaces defines the protobuf changes for erigon-lib on the op-erigon branch.

Optimistic Erigon Project Status

Optimistic Erigon is still under development. Please note that some features are not fully implemented or tested.

Features that work correctly

Features that don't work (or yet to be confirmed)

Stability (dogfooding)

Node Snapshots

We provide node snapshots at https://snapshot.testinprod.io. You can download the node snapshots(chaindata) by using the endpoints provided. Note that the keyword snapshot is different with the erigon's snapshot feature. Node snapshot is distributed in the compressed form using zstd compression.

Getting started with Optimism

To build from the code, you can use the same command described below(make erigon)

You can use every flag erigon has. But there are some required flags and newly added flags for Optimism.

--datadir

[Required] op-erigon cannot execute state transition before the bedrock update. So if the chain was created before bedrock update, preconfigured data file is required to run the node. It includes blocks and states of the pre-bedrock chain.

You can download the chain data from following links:

--externalcl

[Deprecated] An Optimism node needs a consensus client(op-node) and an execution client. op-erigon is intended to have an external consensus client though Erigon has its own consensus client.

This option specifies that Erigon will have an external consensus client. This is required up to version v2.39.0-0.1.1. In subsequent versions, this behavior has been made the default, and using the flag will result in an error.

--authrpc.addr, --authrpc.port, --authrpc.jwtsecret

[Required] Authenticated RPC configs that specify engine API connection info for the consensus client.

--rollup.sequencerhttp

[New flag / Optional] HTTP endpoint of the sequencer. op-erigon will route eth_sendRawTransaction calls to this URL. This is required for transaction submission since Bedrock does not currently have a public mempool. Refer to the documentation for the network you are participating in to get the correct URL.

For the OP-Mainnet, set the sequencer endpoint: https://mainnet-sequencer.optimism.io.

For the OP-Sepolia Testnet, set the sequencer endpoint: https://sepolia-sequencer.optimism.io

--rollup.historicalrpc

[New flag / Optional] The historical RPC endpoint. op-erigon queries historical execution data that op-erigon does not support to historical RPC—for example, pre-bedrock executions. For OP-Sepolia Testnet, please set this value to the Legacy Geth endpoint.

For more information about legacy geth, refer the Optimism's node operator guide.

--db.size.limit=8TB

[Required] Existing nodes whose MDBX page size equals 4kb must add --db.size.limit=8TB flag. Otherwise you will get MDBX_TOO_LARGE error. To check the current page size you can use make db-tools && ./build/bin/mdbx_stat datadir/chaindata. If your chain is the one of op-mainnet & op-sepolia, or your chain is synced before version v2.55, this flag is REQUIRED

--txpool.gossip.disable

[Optional] Disables transaction pool gossiping. Though this is not required, it's useful to set this to true since transaction pool gossip is currently unsupported in the Optimism protocol. If not provided, default value is set to false.

--maxpeers=0, --nodiscover, --v5disc=false

[Optional] Disable P2P. This can save resources if you are only using op-node to sync the chain instead of using execution-layer syncing.

Support Chains

op-erigon supports every OP Stack chains listed in superchain-registry. You can config any superchain easily by setting --chain flag with the chain name written in the superchain registry, in lowercase. (e.g. op-mainnet, base-sepolia, etc.)

Caution

If the chain was created before bedrock update, you need to download pre-bedrock chain data. See the following example to sync op-mainnet!

Example: Running An Optimism Mainnet Node

1. Download and decompress the pre-bedrock chain data

You can download the pre-bedrock chain data from https://op-erigon-backup.mainnet.testinprod.io. Compressed: 115 GB, Uncompressed: 380 GB.

wget -c -O "backup.tar.gz" https://op-erigon-backup.mainnet.testinprod.io
tar -zxvf backup.tar.gz

After untaring, you will get a folder named database which contains a folder chaindata with two files inside: mdbx.dat and mdbx.lck. Use this directory as a datadir($DATADIR) for erigon. For example,

export DATA_DIR=`pwd`/database

2. Configuring op-erigon

There are three options to run op-erigon. Please refer to the preceding descriptions for the required flags.

  1. Build from the source
    
    (build from the source)
    $ make erigon

(example execution command) $ ./build/bin/erigon \ --datadir=$DATA_DIR \ --private.api.addr=localhost:9090 \ --http.addr=0.0.0.0 \ --http.port=8545 \ --http.corsdomain="" \ --http.vhosts="" \ --authrpc.addr=0.0.0.0 \ --authrpc.port=8551 \ --authrpc.vhosts="*" \ --authrpc.jwtsecret=$JWT_SECRET_FILE \ --rollup.sequencerhttp="https://mainnet-sequencer.optimism.io" \ --rollup.historicalrpc="https://mainnet.optimism.io" \ --txpool.gossip.disable=true \ --chain=op-mainnet \ --db.size.limit=8TB

2. Use the Docker image: You can get the official Docker image from [testinprod/op-erigon](https://hub.docker.com/r/testinprod/op-erigon).
3. Use the Helm chart: If you want to deploy op-erigon to the K8S cluster, you can use [Helm chart](https://artifacthub.io/packages/helm/op-charts/erigon).

### 3. Configuring op-node
op-node is a consensus engine of OP stack. You can also build from the source, use official Docker image(`us-docker.pkg.dev/oplabs-tools-artifacts/images/op-node`), or [Helm chart](https://artifacthub.io/packages/helm/op-charts/op-node).

```bash
(example execution command)
$ op-node \
    --l1=$L1_RPC_ENDPOINT \
    --l2=$OP_ERIGON_ENGINE_API_ENDPOINT \
    --l2.jwt-secret=$JWT_SECRET_FILE \
    --network=op-mainnet \
    --rpc.addr=0.0.0.0 \
    --rpc.port=9545 \
    --l2.enginekind=erigon

Execution Layer Syncing

By default, op-node and op-erigon work together to derive every L2 block from the chain. However, this can take a while if the chain is large.

Instead, you can use execution-layer syncmode on op-node to download L2 blocks from the peers in the network. This will allow op-erigon to download and execute large number of blocks at once, resulting in a shorter sync time.

Refer to Optimism's guide for execution layer syncing here.

To enable execution layer syncing, set the following flags on op-node

    --syncmode=execution-layer \ 
    --l2.enginekind=erigon

For more information for op-node, refer the Optimism's node operator guide.

Need any help?

If you need help or find a bug, please share it with our discord!

Thanks

Let's stay Optimistic 🔴


Erigon

Erigon is an implementation of Ethereum (execution layer with embeddable consensus layer), on the efficiency frontier. Archive Node by default.

An accessible and complete version of the documentation is available at erigon.gitbook.io.

Build status Coverage

Disclaimer: this software is currently a tech preview. We will do our best to keep it stable and make no breaking changes but we don't guarantee anything. Things can and will break.

Important defaults: Erigon is an Archive Node by default (to remove history see: --prune flags in erigon --help). We don't allow change this flag after first start.

In-depth links are marked by the microscope sign (🔬)

System Requirements

SSD or NVMe. Do not recommend HDD - on HDD Erigon will always stay N blocks behind chain tip, but not fall behind. Bear in mind that SSD performance deteriorates when close to capacity.

RAM: >=16GB, 64-bit architecture.

Golang version >= 1.21; GCC 10+ or Clang; On Linux: kernel > v4

🔬 more details on disk storage here and here.

Usage

Getting Started

For building the latest release (this will be suitable for most users just wanting to run a node):

git clone --branch release/<x.xx> --single-branch https://github.com/ledgerwatch/erigon.git
cd erigon
make erigon
./build/bin/erigon

You can check the list of releases for release notes.

For building the bleeding edge development branch:

git clone --recurse-submodules https://github.com/ledgerwatch/erigon.git
cd erigon
git checkout devel
make erigon
./build/bin/erigon

Default --snapshots for mainnet, goerli, gnosis, chiado. Other networks now have default --snapshots=false. Increase download speed by flag --torrent.download.rate=20mb. 🔬 See Downloader docs

Use --datadir to choose where to store data.

Use --chain=gnosis for Gnosis Chain, --chain=bor-mainnet for Polygon Mainnet, --chain=mumbai for Polygon Mumbai and --chain=amoy for Polygon Amoy. For Gnosis Chain you need a Consensus Layer client alongside Erigon (https://docs.gnosischain.com/node/manual/beacon).

Running make help will list and describe the convenience commands available in the Makefile.

Datadir structure

Logging

Flags:

In order to log only to the stdout/stderr the --verbosity (or log.console.verbosity) flag can be used to supply an int value specifying the highest output log level:

  LvlCrit = 0
  LvlError = 1
  LvlWarn = 2
  LvlInfo = 3
  LvlDebug = 4
  LvlTrace = 5

To set an output dir for logs to be collected on disk, please set --log.dir.path If you want to change the filename produced from erigon you should also set the --log.dir.prefix flag to an alternate name. The flag --log.dir.verbosity is also available to control the verbosity of this logging, with the same int value as above, or the string value e.g. ' debug' or 'info'. Default verbosity is 'debug' (4), for disk logging.

Log format can be set to json by the use of the boolean flags log.json or log.console.json, or for the disk output --log.dir.json.

Modularity

Erigon by default is "all in one binary" solution, but it's possible start TxPool as separated processes. Same true about: JSON RPC layer (RPCDaemon), p2p layer (Sentry), history download layer (Downloader), consensus. Don't start services as separated processes unless you have clear reason for it: resource limiting, scale, replace by your own implementation, security. How to start Erigon's services as separated processes, see in docker-compose.yml.

Embedded Consensus Layer

On Ethereum Mainnet, Görli, and Sepolia, the Engine API can be disabled in favour of the Erigon native Embedded Consensus Layer. If you want to use the internal Consensus Layer, run Erigon with flag --internalcl. Warning: Staking (block production) is not possible with the embedded CL.

Testnets

If you would like to give Erigon a try, but do not have spare 2TB on your drive, a good option is to start syncing one of the public testnets, Görli. It syncs much quicker, and does not take so much disk space:

git clone --recurse-submodules -j8 https://github.com/ledgerwatch/erigon.git
cd erigon
make erigon
./build/bin/erigon --datadir=<your_datadir> --chain=goerli

Please note the --datadir option that allows you to store Erigon files in a non-default location, in this example, in goerli subdirectory of the current directory. Name of the directory --datadir does not have to match the name of the chain in --chain.

Block Production (PoW Miner or PoS Validator)

Disclaimer: Not supported/tested for Gnosis Chain and Polygon Network (In Progress)

Support only remote-miners.

🔬 Detailed explanation is here.

Windows

Windows users may run erigon in 3 possible ways:

Using TOML or YAML Config Files

You can set Erigon flags through a YAML or TOML configuration file with the flag --config. The flags set in the configuration file can be overwritten by writing the flags directly on Erigon command line

Example

./build/bin/erigon --config ./config.yaml --chain=goerli

Assuming we have chain : "mainnet" in our configuration file, by adding --chain=goerli allows the overwrite of the flag inside of the yaml configuration file and sets the chain to goerli

TOML

Example of setting up TOML config file

datadir = 'your datadir'
port = 1111
chain = "mainnet"
http = true
"private.api.addr"="localhost:9090"

"http.api" = ["eth","debug","net"]

YAML

Example of setting up a YAML config file

datadir : 'your datadir'
port : 1111
chain : "mainnet"
http : true
private.api.addr : "localhost:9090"

http.api : ["eth","debug","net"]

Beacon Chain (Consensus Layer)

Erigon can be used as an Execution Layer (EL) for Consensus Layer clients (CL). Default configuration is OK.

If your CL client is on a different device, add --authrpc.addr 0.0.0.0 (Engine API listens on localhost by default) as well as --authrpc.vhosts <CL host> where <CL host> is your source host or any.

In order to establish a secure connection between the Consensus Layer and the Execution Layer, a JWT secret key is automatically generated.

The JWT secret key will be present in the datadir by default under the name of jwt.hex and its path can be specified with the flag --authrpc.jwtsecret.

This piece of info needs to be specified in the Consensus Layer as well in order to establish connection successfully. More information can be found here.

Once Erigon is running, you need to point your CL client to <erigon address>:8551, where <erigon address> is either localhost or the IP address of the device running Erigon, and also point to the JWT secret path created by Erigon.

Caplin

Caplin is a full-fledged validating Consensus Client like Prysm, Lighthouse, Teku, Nimbus and Lodestar. Its goal is:

Caplin's Usage.

Caplin can be enabled through the --internalcl flag. from that point on, an external Consensus Layer will not be need anymore.

Caplin also has an archivial mode for historical states and blocks. it can be enabled through the --caplin.archive flag. In order to enable the caplin's Beacon API, the flag --beacon.api=<namespaces> must be added. e.g: --beacon.api=beacon,builder,config,debug,node,validator,lighthouse will enable all endpoints. **NOTE: Caplin is not staking-ready so aggregation endpoints are still to be implemented. Additionally enabling the Beacon API will lead to a 6 GB higher RAM usage.

Multiple Instances / One Machine

Define 6 flags to avoid conflicts: --datadir --port --http.port --authrpc.port --torrent.port --private.api.addr. Example of multiple chains on the same machine:

# mainnet
./build/bin/erigon --datadir="<your_mainnet_data_path>" --chain=mainnet --port=30303 --http.port=8545 --authrpc.port=8551 --torrent.port=42069 --private.api.addr=127.0.0.1:9090 --http --ws --http.api=eth,debug,net,trace,web3,erigon

# sepolia
./build/bin/erigon --datadir="<your_sepolia_data_path>" --chain=sepolia --port=30304 --http.port=8546 --authrpc.port=8552 --torrent.port=42068 --private.api.addr=127.0.0.1:9091 --http --ws --http.api=eth,debug,net,trace,web3,erigon

Quote your path if it has spaces.

Dev Chain

🔬 Detailed explanation is DEV_CHAIN.

Key features

🔬 See more detailed overview of functionality and current limitations. It is being updated on recurring basis.

More Efficient State Storage

Flat KV storage. Erigon uses a key-value database and storing accounts and storage in a simple way.

🔬 See our detailed DB walkthrough here.

Preprocessing. For some operations, Erigon uses temporary files to preprocess data before inserting it into the main DB. That reduces write amplification and DB inserts are orders of magnitude quicker.

🔬 See our detailed ETL explanation here.

Plain state.

Single accounts/state trie. Erigon uses a single Merkle trie for both accounts and the storage.

Faster Initial Sync

Erigon uses a rearchitected full sync algorithm from Go-Ethereum that is split into "stages".

🔬 See more detailed explanation in the Staged Sync Readme

It uses the same network primitives and is compatible with regular go-ethereum nodes that are using full sync, you do not need any special sync capabilities for Erigon to sync.

When reimagining the full sync, with focus on batching data together and minimize DB overwrites. That makes it possible to sync Ethereum mainnet in under 2 days if you have a fast enough network connection and an SSD drive.

Examples of stages are:

JSON-RPC daemon

Most of Erigon's components (txpool, rpcdaemon, snapshots downloader, sentry, ...) can work inside Erigon and as independent process.

To enable built-in RPC server: --http and --ws (sharing same port with http)

Run RPCDaemon as separated process: this daemon can use local DB (with running Erigon or on snapshot of a database) or remote DB (run on another server). 🔬 See RPC-Daemon docs

For remote DB

This works regardless of whether RPC daemon is on the same computer with Erigon, or on a different one. They use TPC socket connection to pass data between them. To use this mode, run Erigon in one terminal window

make erigon
./build/bin/erigon --private.api.addr=localhost:9090 --http=false
make rpcdaemon
./build/bin/rpcdaemon --private.api.addr=localhost:9090 --http.api=eth,erigon,web3,net,debug,trace,txpool

gRPC ports

9090 erigon, 9091 sentry, 9092 consensus engine, 9093 torrent downloader, 9094 transactions pool

Supported JSON-RPC calls (eth, debug , net, web3):

For a details on the implementation status of each command, see this table.

Run all components by docker-compose

Docker allows for building and running Erigon via containers. This alleviates the need for installing build dependencies onto the host OS.

Optional: Setup dedicated user

User UID/GID need to be synchronized between the host OS and container so files are written with correct permission.

You may wish to setup a dedicated user/group on the host OS, in which case the following make targets are available.

# create "erigon" user
make user_linux
# or
make user_macos

Environment Variables

There is a .env.example file in the root of the repo.

If not specified, the UID/GID will use the current user.

A good choice for XDG_DATA_HOME is to use the ~erigon/.ethereum directory created by helper targets make user_linux or make user_macos.

Check: Permissions

In all cases, XDG_DATA_HOME (specified or default) must be writeable by the user UID/GID in docker, which will be determined by the DOCKER_UID and DOCKER_GID at build time.

If a build or service startup is failing due to permissions, check that all the directories, UID, and GID controlled by these environment variables are correct.

Run

Next command starts: Erigon on port 30303, rpcdaemon on port 8545, prometheus on port 9090, and grafana on port 3000.

#
# Will mount ~/.local/share/erigon to /home/erigon/.local/share/erigon inside container
#
make docker-compose

#
# or
#
# if you want to use a custom data directory
# or, if you want to use different uid/gid for a dedicated user
#
# To solve this, pass in the uid/gid parameters into the container.
#
# DOCKER_UID: the user id
# DOCKER_GID: the group id
# XDG_DATA_HOME: the data directory (default: ~/.local/share)
#
# Note: /preferred/data/folder must be read/writeable on host OS by user with UID/GID given
#       if you followed above instructions
#
# Note: uid/gid syntax below will automatically use uid/gid of running user so this syntax
#       is intended to be run via the dedicated user setup earlier
#
DOCKER_UID=$(id -u) DOCKER_GID=$(id -g) XDG_DATA_HOME=/preferred/data/folder DOCKER_BUILDKIT=1 COMPOSE_DOCKER_CLI_BUILD=1 make docker-compose

#
# if you want to run the docker, but you are not logged in as the $ERIGON_USER
# then you'll need to adjust the syntax above to grab the correct uid/gid
#
# To run the command via another user, use
#
ERIGON_USER=erigon
sudo -u ${ERIGON_USER} DOCKER_UID=$(id -u ${ERIGON_USER}) DOCKER_GID=$(id -g ${ERIGON_USER}) XDG_DATA_HOME=~${ERIGON_USER}/.ethereum DOCKER_BUILDKIT=1 COMPOSE_DOCKER_CLI_BUILD=1 make docker-compose

Makefile creates the initial directories for erigon, prometheus and grafana. The PID namespace is shared between erigon and rpcdaemon which is required to open Erigon's DB from another process (RPCDaemon local-mode). See: https://github.com/ledgerwatch/erigon/pull/2392/files

If your docker installation requires the docker daemon to run as root (which is by default), you will need to prefix the command above with sudo. However, it is sometimes recommended running docker (and therefore its containers) as a non-root user for security reasons. For more information about how to do this, refer to this article.

Windows support for docker-compose is not ready yet. Please help us with .ps1 port.

Grafana dashboard

docker compose up prometheus grafana, detailed docs.

old data

Disabled by default. To enable see ./build/bin/erigon --help for flags --prune

Documentation

The ./docs directory includes a lot of useful but outdated documentation. For code located in the ./cmd directory, their respective documentation can be found in ./cmd/*/README.md. A more recent collation of developments and happenings in Erigon can be found in the Erigon Blog.

FAQ

How much RAM do I need

Detailed explanation: ./docs/programmers_guide/db_faq.md

Default Ports and Firewalls

erigon ports

Component Port Protocol Purpose Should Expose
engine 9090 TCP gRPC Server Private
engine 42069 TCP & UDP Snap sync (Bittorrent) Public
engine 8551 TCP Engine API (JWT auth) Private
sentry 30303 TCP & UDP eth/68 peering Public
sentry 30304 TCP & UDP eth/67 peering Public
sentry 9091 TCP incoming gRPC Connections Private
rpcdaemon 8545 TCP HTTP & WebSockets & GraphQL Private

Typically, 30303 and 30304 are exposed to the internet to allow incoming peering connections. 9090 is exposed only internally for rpcdaemon or other connections, (e.g. rpcdaemon -> erigon). Port 8551 (JWT authenticated) is exposed only internally for Engine API JSON-RPC queries from the Consensus Layer node.

caplin ports

Component Port Protocol Purpose Should Expose
sentinel 4000 UDP Peering Public
sentinel 4001 TCP Peering Public

If you are using --internalcl aka caplin as your consensus client, then also look at the chart above

beaconAPI ports

Component Port Protocol Purpose Should Expose
REST 5555 TCP REST Public

If you are using --internalcl aka caplin as your consensus client and --beacon.api then also look at the chart above

shared ports

Component Port Protocol Purpose Should Expose
all 6060 TCP pprof Private
all 6060 TCP metrics Private

Optional flags can be enabled that enable pprof or metrics (or both) - however, they both run on 6060 by default, so

you'll have to change one if you want to run both at the same time. use --help with the binary for more info.

other ports

Reserved for future use: gRPC ports: 9092 consensus engine, 9093 snapshot downloader, 9094 TxPool

Hetzner expecting strict firewall rules

0.0.0.0/8             "This" Network             RFC 1122, Section 3.2.1.3
10.0.0.0/8            Private-Use Networks       RFC 1918
100.64.0.0/10         Carrier-Grade NAT (CGN)    RFC 6598, Section 7
127.16.0.0/12         Private-Use Networks       RFC 1918
169.254.0.0/16        Link Local                 RFC 3927
172.16.0.0/12         Private-Use Networks       RFC 1918
192.0.0.0/24          IETF Protocol Assignments  RFC 5736
192.0.2.0/24          TEST-NET-1                 RFC 5737
192.88.99.0/24        6to4 Relay Anycast         RFC 3068
192.168.0.0/16        Private-Use Networks       RFC 1918
198.18.0.0/15         Network Interconnect
Device Benchmark Testing   RFC 2544
198.51.100.0/24       TEST-NET-2                 RFC 5737
203.0.113.0/24        TEST-NET-3                 RFC 5737
224.0.0.0/4           Multicast                  RFC 3171
240.0.0.0/4           Reserved for Future Use    RFC 1112, Section 4
255.255.255.255/32    Limited Broadcast          RFC 919, Section 7
RFC 922, Section 7

Same in IpTables syntax

How to run erigon as a separate user? (e.g. as a systemd daemon)

Running erigon from build/bin as a separate user might produce an error:

error while loading shared libraries: libsilkworm_capi.so: cannot open shared object file: No such file or directory

The library needs to be installed for another user using make DIST=<path> install. You could use $HOME/erigon or /opt/erigon as the installation path, for example:

make DIST=/opt/erigon install

and then run /opt/erigon/erigon.

How to get diagnostic for bug report?

How to run local devnet?

🔬 Detailed explanation is here.

Docker permissions error

Docker uses user erigon with UID/GID 1000 (for security reasons). You can see this user being created in the Dockerfile. Can fix by giving a host's user ownership of the folder, where the host's user UID/GID is the same as the docker's user UID/GID (1000). More details in post

How to run public RPC api

Run RaspberyPI

https://github.com/mathMakesArt/Erigon-on-RPi-4

How to change db pagesize

post

Getting in touch

Erigon Discord Server

The main discussions are happening on our Discord server. To get an invite, send an email to bloxster [at] proton.me with your name, occupation, a brief explanation of why you want to join the Discord, and how you heard about Erigon.

Reporting security issues/concerns

Send an email to security [at] torquem.ch.

Known issues

htop shows incorrect memory usage

Erigon's internal DB (MDBX) using MemoryMap - when OS does manage all read, write, cache operations instead of Application (linux , windows)

htop on column res shows memory of "App + OS used to hold page cache for given App", but it's not informative, because if htop says that app using 90% of memory you still can run 3 more instances of app on the same machine - because most of that 90% is "OS pages cache". OS automatically frees this cache any time it needs memory. Smaller "page cache size" may not impact performance of Erigon at all.

Next tools show correct memory usage of Erigon:

Blocks Execution is slow on cloud-network-drives

Please read https://github.com/ledgerwatch/erigon/issues/1516#issuecomment-811958891 In short: network-disks are bad for blocks execution - because blocks execution reading data from db non-parallel non-batched way.

Filesystem's background features are expensive

For example: btrfs's autodefrag option - may increase write IO 100x times

Gnome Tracker can kill Erigon

Gnome Tracker - detecting miners and kill them.

the --mount option requires BuildKit error

For anyone else that was getting the BuildKit error when trying to start Erigon the old way you can use the below...

XDG_DATA_HOME=/preferred/data/folder DOCKER_BUILDKIT=1 COMPOSE_DOCKER_CLI_BUILD=1 make docker-compose