theislab / cellrank_notebooks

Tutorials and examples for CellRank.
https://cellrank.org
BSD 3-Clause "New" or "Revised" License
6 stars 5 forks source link

Notebook testing #22

Closed Marius1311 closed 4 years ago

Marius1311 commented 4 years ago
======================================================= test session starts ========================================================
platform darwin -- Python 3.6.9, pytest-5.3.2, py-1.8.1, pluggy-0.13.1
rootdir: /Users/marius/Projects/cellrank_notebooks, inifile: tox.ini, testpaths: tests/
plugins: cov-2.9.0, parallel-0.1.0, notebook-0.6.0
collected 3 items                                                                                                                  
pytest-parallel: 2 workers (processes), 1 test per worker (thread)
..FFFF
============================================================= FAILURES =============================================================
_______________________________________________________ test_pancreas_basic ________________________________________________________

nb_regression = NBRegressionFixture(exec_notebook=True, exec_cwd='/var/folders/mx/0hyv8t2s26jdj79f55kvc_b80000gn/T', exec_allow_errors...tputs/*/data/application/vnd.jupyter.widget-view+json'), diff_use_color=True, diff_color_words=True, force_regen=False)

    def decorator(nb_regression) -> None:
        fpath = f"{(TUTORIALS / func.__name__[5:]).resolve()}.ipynb"

        nb = nbformat.read(fpath, as_version=4)
        _inject_sentinel(nb)

        with tempfile.NamedTemporaryFile("w", suffix=".ipynb") as tmpf:
            nbformat.write(nb, tmpf)
            result = nb_regression.check(tmpf.name, raise_errors=False)

>       _assert_execute_sentinel(result)

tests/test_tutorials.py:42: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

result = NBRegressionResult(diff_full_length=1,diff_filtered_length=1)

    def _assert_execute_sentinel(result) -> None:
        match = parse(
            f'$.[*].diff[*].diff[*].diff[*].valuelist[?(@.text = "{SENTINEL}\n")].text'
        )
        found = match.find(result.diff_filtered)

        if not found:
>           raise RuntimeError(result.diff_string)
E           RuntimeError: 
E           --- expected
E           +++ obtained
E           ## modified /cells/6/outputs/0/text:
E           @@ -1 +1,5 @@
E           try downloading from url
E           https://github.com/theislab/cellrank_notebooks/raw/master/datasets/pancreas/endocrinogenesis_day15.5.h5ad
E           ... this may take a while but only happens once
E           
E           Abundance of ['spliced', 'unspliced']: [0.81 0.19]
E           
E           ## inserted before /cells/6/outputs/1:
E           +  output:
E           +    output_type: display_data
E           +    data:
E           +      application/vnd.jupyter.widget-view+json:
E           +        model_id: a41d4aa7dd4d4c848f04034d03bcb2a1
E           +        version_major: 2
E           +        version_minor: 0
E           +      text/plain: HBox(children=(FloatProgress(value=1.0, bar_style='info', description='endocrinogenesis_day15.5.h5ad', max=1.0…
E           
E           ## deleted /cells/6/outputs/1:
E           -  output:
E           -    output_type: execute_result
E           -    execution_count: 2
E           -    data:
E           -      text/plain:
E           -        AnnData object with n_obs × n_vars = 2531 × 27998
E           -            obs: 'day', 'proliferation', 'G2M_score', 'S_score', 'phase', 'clusters_coarse', 'clusters', 'clusters_fine', 'louvain_Alpha', 'louvain_Beta'
E           -            var: 'highly_variable_genes'
E           -            uns: 'clusters_colors', 'clusters_fine_colors', 'day_colors', 'louvain_Alpha_colors', 'louvain_Beta_colors', 'neighbors', 'pca'
E           -            obsm: 'X_pca', 'X_umap'
E           -            layers: 'spliced', 'unspliced'
E           -            obsp: 'connectivities', 'distances'
E           
E           ## inserted before /cells/6/outputs/2:
E           +  output:
E           +    output_type: execute_result
E           +    execution_count: 2
E           +    data:
E           +      text/plain:
E           +        AnnData object with n_obs × n_vars = 2531 × 27998
E           +            obs: 'day', 'proliferation', 'G2M_score', 'S_score', 'phase', 'clusters_coarse', 'clusters', 'clusters_fine', 'louvain_Alpha', 'louvain_Beta'
E           +            var: 'highly_variable_genes'
E           +            uns: 'clusters_colors', 'clusters_fine_colors', 'day_colors', 'louvain_Alpha_colors', 'louvain_Beta_colors', 'neighbors', 'pca'
E           +            obsm: 'X_pca', 'X_umap'
E           +            layers: 'spliced', 'unspliced'
E           +            obsp: 'connectivities', 'distances'
E           
E           ## inserted before /cells/12/outputs/0:
E           +  output:
E           +    output_type: error
E           +    ename: PermissionError
E           +    evalue: [Errno 13] Permission denied: '../../cached_files'
E           +    traceback:
E           +      item[0]: ---------------------------------------------------------------------------
E           +      item[1]: PermissionError                           Traceback (most recent call last)
E           +      item[2]:
E           +        <ipython-input-4-bd53879ad1ad> in <module>
E           +              1 try:
E           +              2     import scachepy
E           +        ----> 3     c = scachepy.Cache('../../cached_files/basic_tutorial/')
E           +              4     c.tl.recover_dynamics(adata, force=False)
E           +              5 except ModuleNotFoundError:
E           +      item[3]:
E           +        ~/Projects/scachepy/scachepy/cache.py in __init__(self, root_dir, backend, compression, ext, separate_dirs)
E           +             62         else:
E           +             63             # shared backend
E           +        ---> 64             self._backend = backend_type(root_dir, self._ext, cache=self)
E           +             65             self.pp = PpModule(self._backend)
E           +             66             self.tl = TlModule(self._backend)
E           +      item[4]:
E           +        ~/Projects/scachepy/scachepy/backends.py in __init__(self, dirname, ext, cache)
E           +             14     def __init__(self, dirname, ext, *, cache):
E           +             15         if not os.path.exists(dirname):
E           +        ---> 16             os.makedirs(dirname)
E           +             17 
E           +             18         self._dirname = Path(dirname)
E           +      item[5]:
E           +        ~/miniconda3/envs/cellrank/lib/python3.6/os.py in makedirs(name, mode, exist_ok)
E           +            208     if head and tail and not path.exists(head):
E           +            209         try:
E           +        --> 210             makedirs(head, mode, exist_ok)
E           +            211         except FileExistsError:
E           +            212             # Defeats race condition when another thread created the path
E           +      item[6]:
E           +        ~/miniconda3/envs/cellrank/lib/python3.6/os.py in makedirs(name, mode, exist_ok)
E           +            218             return
E           +            219     try:
E           +        --> 220         mkdir(name, mode)
E           +            221     except OSError:
E           +            222         # Cannot rely on checking for EEXIST, since the operating system
E           +      item[7]: PermissionError: [Errno 13] Permission denied: '../../cached_files'
E           
E           ## deleted /cells/12/outputs/0:
E           -  output:
E           -    output_type: stream
E           -    name: stdout
E           -    text:
E           -      You don't seem to have scachepy installed, but that's fine, you just have to be a bit patient (~10min). 
E           -      recovering dynamics
E           -          finished (DURATION) --> added 
E           -          'fit_pars', fitted parameters for splicing dynamics (adata.var)
E           
E           ## modified /cells/21/outputs/0/text:
E           @@ -1 +1,21 @@
E           Computing transition matrix based on velocity correlations using mode `'deterministic'`
E           
E               Finish (DURATION)
E           Using a connectivity kernel with weight `0.2`
E           Computing transition matrix based on connectivities
E               Finish (DURATION)
E           Computing eigendecomposition of the transition matrix
E           Adding `.eigendecomposition`
E                  `adata.uns['eig_fwd']`
E           Adding `.eigendecomposition`
E                  `adata.uns['eig_fwd']`
E           Computing metastable states
E           INFO: Using pre-computed schur decomposition
E           Adding `.schur`
E                  `.coarse_T`
E                  `.coarse_stationary_distribution`
E               Finish (DURATION)
E           Adding `adata.obs['final_states_probs']`
E                  `adata.obs['final_states']`
E                  `.final_states_probabilities`
E                  `.final_states`
E           
E           ## deleted /cells/21/outputs/3:
E           
E           ## modified /cells/26/outputs/0/text:
E           @@ -1 +1,17 @@
E           Computing transition matrix based on velocity correlations using mode `'deterministic'`
E           
E               Finish (DURATION)
E           Computing eigendecomposition of the transition matrix
E           Adding `.eigendecomposition`
E                  `adata.uns['eig_bwd']`
E           Computing metastable states
E           WARNING: For `n_states=1`, stationary distribution is computed
E           Computing eigendecomposition of the transition matrix
E           Adding `.eigendecomposition`
E                  `adata.uns['eig_bwd']`
E           Adding `.metastable_states`
E               Finish (DURATION)
E           Adding `adata.obs['root_states_probs']`
E                  `adata.obs['root_states']`
E                  `.final_states_probabilities`
E                  `.final_states`
E           
E           ## inserted before /cells/26/outputs/2:
E           +  output:
E           +    output_type: display_data
E           +    data:
E           +      image/png: iVBORw0K...<snip base64, md5=63def2b2dfc95257...>
E           +      text/plain: <Figure size 600x400 with 1 Axes>
E           +    metadata (unknown keys):
E           +      image/png:
E           +        height: 345
E           +        width: 617
E           
E           ## deleted /cells/26/outputs/2:
E           -  output:
E           -    output_type: stream
E           -    name: stdout
E           -    text:
E           -      
E           -          Finish (DURATION)
E           -      Computing eigendecomposition of the transition matrix
E           -      Adding `.eigendecomposition`
E           -             `adata.uns['eig_bwd']`
E           -      Computing metastable states
E           -      WARNING: For `n_states=1`, stationary distribution is computed
E           -      Computing eigendecomposition of the transition matrix
E           -      Adding `.eigendecomposition`
E           -             `adata.uns['eig_bwd']`
E           -      Adding `.metastable_states`
E           -          Finish (DURATION)
E           -      Adding `adata.obs['root_states_probs']`
E           -             `adata.obs['root_states']`
E           -             `.final_states_probabilities`
E           -             `.final_states`
E           
E           ## deleted /cells/26/outputs/4:
E           
E           

tests/test_tutorials.py:27: RuntimeError
______________________________________________________ test_pancreas_advanced ______________________________________________________

nb_regression = NBRegressionFixture(exec_notebook=True, exec_cwd='/var/folders/mx/0hyv8t2s26jdj79f55kvc_b80000gn/T', exec_allow_errors...tputs/*/data/application/vnd.jupyter.widget-view+json'), diff_use_color=True, diff_color_words=True, force_regen=False)

    def decorator(nb_regression) -> None:
        fpath = f"{(TUTORIALS / func.__name__[5:]).resolve()}.ipynb"

        nb = nbformat.read(fpath, as_version=4)
        _inject_sentinel(nb)

        with tempfile.NamedTemporaryFile("w", suffix=".ipynb") as tmpf:
            nbformat.write(nb, tmpf)
            result = nb_regression.check(tmpf.name, raise_errors=False)

>       _assert_execute_sentinel(result)

tests/test_tutorials.py:42: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

result = NBRegressionResult(diff_full_length=1,diff_filtered_length=1)

    def _assert_execute_sentinel(result) -> None:
        match = parse(
            f'$.[*].diff[*].diff[*].diff[*].valuelist[?(@.text = "{SENTINEL}\n")].text'
        )
        found = match.find(result.diff_filtered)

        if not found:
>           raise RuntimeError(result.diff_string)
E           RuntimeError: 
E           --- expected
E           +++ obtained
E           ## modified /cells/6/outputs/0/text:
E           @@ -1 +1,5 @@
E           try downloading from url
E           https://github.com/theislab/cellrank_notebooks/raw/master/datasets/pancreas/endocrinogenesis_day15.5.h5ad
E           ... this may take a while but only happens once
E           
E           Abundance of ['spliced', 'unspliced']: [0.81 0.19]
E           
E           ## inserted before /cells/6/outputs/1:
E           +  output:
E           +    output_type: display_data
E           +    data:
E           +      application/vnd.jupyter.widget-view+json:
E           +        model_id: 2ed812db3df54097a598085fa1de204c
E           +        version_major: 2
E           +        version_minor: 0
E           +      text/plain: HBox(children=(FloatProgress(value=1.0, bar_style='info', description='endocrinogenesis_day15.5.h5ad', max=1.0…
E           
E           ## deleted /cells/6/outputs/1:
E           -  output:
E           -    output_type: execute_result
E           -    execution_count: 2
E           -    data:
E           -      text/plain:
E           -        AnnData object with n_obs × n_vars = 2531 × 27998
E           -            obs: 'day', 'proliferation', 'G2M_score', 'S_score', 'phase', 'clusters_coarse', 'clusters', 'clusters_fine', 'louvain_Alpha', 'louvain_Beta'
E           -            var: 'highly_variable_genes'
E           -            uns: 'clusters_colors', 'clusters_fine_colors', 'day_colors', 'louvain_Alpha_colors', 'louvain_Beta_colors', 'neighbors', 'pca'
E           -            obsm: 'X_pca', 'X_umap'
E           -            layers: 'spliced', 'unspliced'
E           -            obsp: 'connectivities', 'distances'
E           
E           ## inserted before /cells/6/outputs/2:
E           +  output:
E           +    output_type: execute_result
E           +    execution_count: 2
E           +    data:
E           +      text/plain:
E           +        AnnData object with n_obs × n_vars = 2531 × 27998
E           +            obs: 'day', 'proliferation', 'G2M_score', 'S_score', 'phase', 'clusters_coarse', 'clusters', 'clusters_fine', 'louvain_Alpha', 'louvain_Beta'
E           +            var: 'highly_variable_genes'
E           +            uns: 'clusters_colors', 'clusters_fine_colors', 'day_colors', 'louvain_Alpha_colors', 'louvain_Beta_colors', 'neighbors', 'pca'
E           +            obsm: 'X_pca', 'X_umap'
E           +            layers: 'spliced', 'unspliced'
E           +            obsp: 'connectivities', 'distances'
E           
E           ## inserted before /cells/12/outputs/0:
E           +  output:
E           +    output_type: error
E           +    ename: PermissionError
E           +    evalue: [Errno 13] Permission denied: '../../cached_files'
E           +    traceback:
E           +      item[0]: ---------------------------------------------------------------------------
E           +      item[1]: PermissionError                           Traceback (most recent call last)
E           +      item[2]:
E           +        <ipython-input-4-bd53879ad1ad> in <module>
E           +              1 try:
E           +              2     import scachepy
E           +        ----> 3     c = scachepy.Cache('../../cached_files/basic_tutorial/')
E           +              4     c.tl.recover_dynamics(adata, force=False)
E           +              5 except ModuleNotFoundError:
E           +      item[3]:
E           +        ~/Projects/scachepy/scachepy/cache.py in __init__(self, root_dir, backend, compression, ext, separate_dirs)
E           +             62         else:
E           +             63             # shared backend
E           +        ---> 64             self._backend = backend_type(root_dir, self._ext, cache=self)
E           +             65             self.pp = PpModule(self._backend)
E           +             66             self.tl = TlModule(self._backend)
E           +      item[4]:
E           +        ~/Projects/scachepy/scachepy/backends.py in __init__(self, dirname, ext, cache)
E           +             14     def __init__(self, dirname, ext, *, cache):
E           +             15         if not os.path.exists(dirname):
E           +        ---> 16             os.makedirs(dirname)
E           +             17 
E           +             18         self._dirname = Path(dirname)
E           +      item[5]:
E           +        ~/miniconda3/envs/cellrank/lib/python3.6/os.py in makedirs(name, mode, exist_ok)
E           +            208     if head and tail and not path.exists(head):
E           +            209         try:
E           +        --> 210             makedirs(head, mode, exist_ok)
E           +            211         except FileExistsError:
E           +            212             # Defeats race condition when another thread created the path
E           +      item[6]:
E           +        ~/miniconda3/envs/cellrank/lib/python3.6/os.py in makedirs(name, mode, exist_ok)
E           +            218             return
E           +            219     try:
E           +        --> 220         mkdir(name, mode)
E           +            221     except OSError:
E           +            222         # Cannot rely on checking for EEXIST, since the operating system
E           +      item[7]: PermissionError: [Errno 13] Permission denied: '../../cached_files'
E           
E           ## deleted /cells/12/outputs/0:
E           -  output:
E           -    output_type: stream
E           -    name: stdout
E           -    text:
E           -      You don't seem to have scachepy installed, but that's fine, you just have to be a bit patient (~10min). 
E           -      recovering dynamics
E           -          finished (DURATION) --> added 
E           -          'fit_pars', fitted parameters for splicing dynamics (adata.var)
E           
E           ## modified /cells/25/outputs/0/text:
E           @@ -1 +1,3 @@
E           Computing transition matrix based on velocity correlations using mode `'deterministic'`
E           
E               Finish (DURATION)
E           
E           ## inserted before /cells/25/outputs/2:
E           +  output:
E           +    output_type: execute_result
E           +    execution_count: 10
E           +    data:
E           +      text/plain: <Velo>
E           
E           ## deleted /cells/25/outputs/2:
E           -  output:
E           -    output_type: stream
E           -    name: stdout
E           -    text:
E           -      
E           -          Finish (DURATION)
E           
E           ## deleted /cells/25/outputs/4:
E           
E           

tests/test_tutorials.py:27: RuntimeError
============================================= 2 failed, 1 passed in 101.63s (0:01:41)
Marius1311 commented 4 years ago
======================================================= test session starts ========================================================
platform darwin -- Python 3.6.9, pytest-5.3.2, py-1.8.1, pluggy-0.13.1
rootdir: /Users/marius/Projects/cellrank_notebooks, inifile: tox.ini, testpaths: tests/
plugins: cov-2.9.0, parallel-0.1.0, notebook-0.6.0
collected 3 items                                                                                                                  
pytest-parallel: 2 workers (processes), 1 test per worker (thread)
..FF..
============================================================= FAILURES =============================================================
_______________________________________________________ test_pancreas_basic ________________________________________________________

nb_regression = NBRegressionFixture(exec_notebook=True, exec_cwd='/var/folders/mx/0hyv8t2s26jdj79f55kvc_b80000gn/T', exec_allow_errors...tputs/*/data/application/vnd.jupyter.widget-view+json'), diff_use_color=True, diff_color_words=True, force_regen=False)

    def decorator(nb_regression) -> None:
        fpath = f"{(TUTORIALS / func.__name__[5:]).resolve()}.ipynb"

        nb = nbformat.read(fpath, as_version=4)
        _inject_sentinel(nb)

        with tempfile.NamedTemporaryFile("w", suffix=".ipynb") as tmpf:
            nbformat.write(nb, tmpf)
            result = nb_regression.check(tmpf.name, raise_errors=False)

>       _assert_execute_sentinel(result)

tests/test_tutorials.py:42: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

result = NBRegressionResult(diff_full_length=1,diff_filtered_length=1)

    def _assert_execute_sentinel(result) -> None:
        match = parse(
            f'$.[*].diff[*].diff[*].diff[*].valuelist[?(@.text = "{SENTINEL}\n")].text'
        )
        found = match.find(result.diff_filtered)

        if not found:
>           raise RuntimeError(result.diff_string)
E           RuntimeError: 
E           --- expected
E           +++ obtained
E           ## modified /cells/21/outputs/0/text:
E           @@ -1 +1,17 @@
E           Computing transition matrix based on velocity correlations
E               using mode `'deterministic'`Finish (DURATION)
E           Using a connectivity kernel with weight `0.2`
E           Computing transition matrix based on connectivities
E               Finish (DURATION)
E           Computing eigendecomposition of the transition matrix
E           Computing metastable states
E           INFO: Using pre-computed schur decomposition
E           Adding `.schur`
E                  `.coarse_T`
E                  `.coarse_stationary_distribution`
E               Finish (DURATION)
E           Adding `adata.obs['final_states_probs']`
E                  `adata.obs['final_states']`
E                  `.final_states_probabilities`
E                  `.final_states`
E           
E           
E           ## deleted /cells/21/outputs/3-4:
E           
E           ## modified /cells/26/outputs/0/text:
E           @@ -1 +1,13 @@
E           Computing transition matrix based on velocity correlations
E               using mode `'deterministic'`Finish (DURATION)
E           Computing eigendecomposition of the transition matrix
E           Computing metastable states
E           WARNING: For `n_states=1`, stationary distribution is computed
E           Computing eigendecomposition of the transition matrix
E           Adding `.metastable_states`
E               Finish (DURATION)
E           Adding `adata.obs['root_states_probs']`
E                  `adata.obs['root_states']`
E                  `.final_states_probabilities`
E                  `.final_states`
E           
E           
E           ## modified /cells/26/outputs/1/data/text/plain:
E           -  HBox(children=(FloatProgress(value=0.0, max=2531.0), HTML(value='')))
E           +  <Figure size 600x400 with 1 Axes>
E           
E           ## deleted /cells/26/outputs/4-5:
E           
E           ## modified /cells/30/outputs/1/data/text/plain:
E           -  <Figure size 2400x400 with 8 Axes>
E           +  <Figure size 1800x400 with 6 Axes>
E           
E           ## modified /cells/38/outputs/0/text:
E           @@ -7,9 +7,9 @@ computing Diffusion Maps using n_comps=15(=n_dcs)
E           computing transitions
E               finished (DURATION)
E               eigenvalues of transition matrix
E               [1.         0.99748987 0.9902442  0.981653   0.975423340.9816529  0.9754233  0.96905994
E                0.9629265  0.956972   0.9405951  0.9212147  0.91551214 0.89869016
E                0.8907606  0.8846065  0.87359995]0.940595   0.92121476 0.9155121  0.89869034
E                0.89076036 0.88460636 0.8736001 ]
E               finished (DURATION)
E           computing Diffusion Pseudotime using n_dcs=10
E               finished (DURATION)
E           
E           ## inserted before /cells/40/outputs/0:
E           +  output:
E           +    output_type: error
E           +    ename: AttributeError
E           +    evalue: module 'cellrank.utils.models' has no attribute 'GAM'
E           +    traceback:
E           +      item[0]: ---------------------------------------------------------------------------
E           +      item[1]: AttributeError                            Traceback (most recent call last)
E           +      item[2]:
E           +        <ipython-input-15-1ea02b53e60a> in <module>
E           +        ----> 1 model = cr.ul.models.GAM(adata, grid=None)
E           +              2 cr.pl.gene_trends(adata, model=model, data_key='Ms',
E           +              3                   genes=['Pak3','Neurog3', 'Ghrl'], ncols=3,
E           +              4                   time_key='latent_time', same_plot=True, hide_cells=True,
E           +              5                   figsize=(15, 4), n_test_points=200)
E           +      item[3]: AttributeError: module 'cellrank.utils.models' has no attribute 'GAM'
E           
E           ## deleted /cells/40/outputs/0:
E           -  output:
E           -    output_type: display_data
E           -    data:
E           -      application/vnd.jupyter.widget-view+json:
E           -        model_id: fb8086092d634b058201c1b02c03c746
E           -        version_major: 2
E           -        version_minor: 0
E           -      text/plain: HBox(children=(FloatProgress(value=0.0, max=3.0), HTML(value='')))
E           
E           ## deleted /cells/40/outputs/3-4:
E           
E           

tests/test_tutorials.py:27: RuntimeError
------------------------------------------------------- Captured stdout call -------------------------------------------------------
Mat Object: 1 MPI processes
  type: seqdense
1.0000000000000053e+00 1.9399300423821583e-02 1.6216384672837519e-02 1.3644740650018580e-02 
0.0000000000000000e+00 9.8691603711685361e-01 -1.5888405923464067e-02 -9.6846859664338515e-03 
0.0000000000000000e+00 0.0000000000000000e+00 9.5712987035181185e-01 -3.2413583628749139e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 9.0058524206388879e-01 
Mat Object: 1 MPI processes
  type: seqdense
1.0000000000000022e+00 1.8394809067110121e-02 -9.1657752687800964e-03 2.1210165197506990e-02 -5.1284545148971798e-03 -4.9511883606713613e-03 2.4749904320193833e-02 -3.5647385848262624e-02 -1.9441140214873729e-02 5.0194520066591135e-02 4.0374343154942786e-03 -1.9464082179584282e-02 -2.9555476909066670e-02 -3.7892267005631537e-02 -1.5995916742134172e-02 -3.0638074561978396e-02 -2.9009898409066426e-03 -6.3777374470016981e-04 -1.6440180652110000e-02 7.0753808393235768e-03 1.1995815600782144e-02 
0.0000000000000000e+00 9.8388020591697600e-01 1.6234920906787308e-02 -5.7172938797180094e-03 -1.0256174110905052e-02 -5.9198343353554558e-03 4.2959957583286025e-03 -1.0420652002729265e-02 -2.6659294510096691e-02 2.4859587114495710e-02 -9.5206428012550148e-03 5.0090982838026481e-03 1.1105004713413280e-02 4.4108139127608269e-02 -1.3443962542954770e-02 2.0937709465915427e-02 6.1977324987850975e-02 -4.3854942853007860e-02 1.0395516521449523e-02 1.3681929240728864e-03 3.3396555167966441e-02 
0.0000000000000000e+00 0.0000000000000000e+00 9.5865506646539489e-01 1.5113557446658505e-02 2.0480200305799057e-02 5.8583595167451905e-03 2.5859051421880750e-03 4.5973065876850159e-03 7.3736729719267905e-04 1.4376282183705673e-02 -8.5488116727218781e-03 1.6749992555578141e-02 -1.7503788441843213e-03 1.1095510134362763e-01 -6.6910094002788620e-02 9.5895740241460619e-03 6.0704907798029575e-02 -5.1831395138621512e-02 -2.1713173210907214e-02 5.0568011044313597e-02 -5.1287563973198544e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 8.9309290351861914e-01 -1.5263466912425039e-01 2.9485285754455179e-02 -2.1756818216961449e-02 -5.0715677825490024e-02 -2.4648945213370025e-02 -1.5341431604347108e-02 -4.7077345308542181e-03 1.5736277896884070e-02 1.1669949265223791e-02 -1.2986984767245793e-03 -3.0611298022678944e-02 1.1562349274614051e-03 1.5241744239737181e-02 9.8331005919108389e-03 9.8755255157292870e-03 -9.0975241402154131e-03 -7.4208351339016362e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 8.1096141584535375e-01 2.3311995605576585e-01 6.2195091128854151e-02 7.6888047871798504e-03 -1.2361971666237126e-02 -3.7870679461469055e-02 -3.3258172486783581e-02 -7.4087874760896252e-03 1.2313290294218484e-02 -1.5050732921669314e-02 -1.0609880757625015e-02 2.2556734871440647e-02 1.1984626119363937e-02 1.8139865616140675e-02 -1.1170755245168324e-02 -6.3193747803677022e-02 -1.6158923104284965e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -7.4245945228037027e-05 8.1096141584535375e-01 -2.7935712164239973e-01 -1.0454771782889521e-01 1.8412210818337715e-02 2.8576005247857885e-02 9.9414040451764343e-02 1.5142309623294358e-02 -2.8672491227631387e-02 4.2358790220237419e-02 4.7060475001794659e-02 -4.2091627826607763e-03 -2.6585581317290396e-02 -1.5387763695406682e-02 -1.5784933694385196e-02 1.8726259714140884e-02 4.1108829105318712e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 7.6336599743849676e-01 -2.5239337297293502e-01 -4.9938530986943487e-02 -1.8639997771605306e-02 6.0688893277458744e-02 1.0446236317971817e-01 3.3218675247852422e-02 2.4538794751741966e-02 7.8220076471763669e-02 -6.1042742991166556e-02 -1.3852174039322013e-02 -1.8428069997211260e-02 7.2315473371533396e-03 1.8375810648329462e-02 1.7916475214673187e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 7.4971013146970011e-01 -1.5852076029197756e-01 -1.9700077020068751e-01 8.8645507390463354e-02 6.3393155665900452e-02 7.4476888534205365e-02 -1.0735330642288685e-02 -4.1523422899542119e-02 -1.0306333562419609e-01 6.8603031871814948e-02 2.5597138987895000e-02 -1.1638710294113595e-02 6.8885034079984753e-02 5.2576059278190000e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.0780493773339275e-05 7.4971013146970011e-01 -3.7816589950803343e-02 -1.4115386085059656e-01 1.0504171222088036e-01 3.2798648665845781e-02 -3.5179402615183659e-02 8.9768327165572169e-03 2.6365098159260573e-02 2.2861056718434924e-02 5.5011866033092521e-02 3.5097141396987115e-02 -1.8266576994542687e-02 2.2210099749426709e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 7.1532297382758725e-01 -1.9350523311136686e-01 6.7148027144371167e-02 6.1641345895710652e-02 -5.0056987128377979e-02 2.4112571448521151e-03 4.0288644115582639e-02 2.5729468754906702e-02 4.2426777662229118e-02 7.5122998574173483e-02 -3.5798487145220124e-02 2.1288816879175391e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6.9786611116433050e-01 -2.4564320909930443e-01 2.6786164003543785e-02 -4.5274244834400512e-02 -1.3727617795904426e-01 1.4376425384423190e-03 -5.0514730264568982e-03 -1.6786769955786335e-02 3.6819707891820992e-02 7.3580747847445394e-02 -6.5587975258254744e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.6560913555150187e-02 6.9786611116433050e-01 -2.7376617780169582e-01 -4.1127424067945319e-02 -1.7657882184374099e-02 7.5723208846554091e-02 -5.4899036140488924e-02 -6.4307066564244795e-03 2.4763340435936163e-03 2.3806199931179068e-02 -6.1635897856039488e-03 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6.6992204013743084e-01 2.2132300604572011e-01 1.8254018073191494e-01 1.1251496651353413e-01 -5.6200131667464091e-02 -6.6245193053671686e-02 1.4494380222698226e-02 1.0095741934204759e-02 1.7834560241092725e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6.5646610409352280e-01 -1.0542837949394571e-01 1.3593496146185399e-01 5.4970893096673357e-02 -1.3047659257462136e-02 7.7643141550366460e-02 -1.0802033256174431e-01 4.3781262896091737e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6.3777930989938492e-01 2.8160864224105631e-01 8.2058094191168371e-02 3.4485156632644183e-02 -2.6847506914538584e-02 4.8546010609734708e-02 -4.1945893567191896e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.7043473294473490e-01 3.1738593928909026e-01 5.5923287323828300e-02 -1.0308441810944682e-01 5.1310770245286991e-02 8.3856603955213757e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -7.5267888211736689e-02 5.7043473294473490e-01 -1.8372987364440369e-01 -5.0911795404518616e-02 1.8354020412000741e-01 -4.3125442744922929e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.8226869478769883e-01 -1.1217025518797807e-01 1.1903585627261376e-01 1.0942153659147055e-01 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.7320123355430774e-01 -9.9042208315608268e-02 1.0313332305961435e-01 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.5906406170613820e-01 -1.9106434199430572e-01 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.0763760627223611e-02 5.5906406170613820e-01 
Mat Object: 1 MPI processes
  type: seqdense
1.0000000000000060e+00 1.8394809067109857e-02 -9.1657752687814894e-03 2.1210165197499607e-02 4.9511883593032231e-03 -5.1284545148871843e-03 2.4749904329163283e-02 -1.9441140198099852e-02 3.5647385833584969e-02 -5.0194520078841995e-02 -1.9464082184863989e-02 -4.0374343037907793e-03 -2.9555476950766442e-02 3.7892266944290973e-02 1.5995916786364615e-02 3.0638074570510362e-02 2.9009898577792878e-03 -6.3777356272502566e-04 1.6440180693733222e-02 -7.0753812048869689e-03 -1.1995813272428164e-02 1.2537536385981677e-02 
0.0000000000000000e+00 9.8388020591697156e-01 1.6234920906787402e-02 -5.7172938797261132e-03 5.9198343353511745e-03 -1.0256174110755429e-02 4.2959957614134075e-03 -2.6659294500385646e-02 1.0420651993973606e-02 -2.4859587127259764e-02 5.0090982894871504e-03 9.5206428041569001e-03 1.1105004761922809e-02 -4.4108139130336663e-02 1.3443962499570642e-02 -2.0937709432172241e-02 -6.1977324968501675e-02 -4.3854943027582596e-02 -1.0395515887594263e-02 -1.3681928552427257e-03 -3.3396553467413714e-02 6.5162162357859177e-03 
0.0000000000000000e+00 0.0000000000000000e+00 9.5865506646538656e-01 1.5113557446671456e-02 -5.8583595174486365e-03 2.0480200305617851e-02 2.5859051411046175e-03 7.3736730502298349e-04 -4.5973065898367686e-03 -1.4376282182579365e-02 1.6749992563482762e-02 8.5488116712882974e-03 -1.7503787232094877e-03 -1.1095510144279364e-01 6.6910093851935026e-02 -9.5895739736948822e-03 -6.0704907766561712e-02 -5.1831394876830271e-02 2.1713172361880664e-02 -5.0568011047718936e-02 5.1287560824694878e-02 -1.5718050267507347e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 8.9309290351854487e-01 -2.9485285749374385e-02 -1.5263466912509510e-01 -2.1756818207577199e-02 -2.4648945230309628e-02 5.0715677827072064e-02 1.5341431587721431e-02 1.5736277899252530e-02 4.7077345254936528e-03 1.1669949262426382e-02 1.2986984431021295e-03 3.0611298024899220e-02 -1.1562349051222093e-03 -1.5241744244830976e-02 9.8331004624749238e-03 -9.8755252953580328e-03 9.0975253177864035e-03 7.4208351232422864e-02 1.5164898015622486e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 8.1096141583851800e-01 7.4245944248294102e-05 2.7935712161937937e-01 -1.8412210808666056e-02 -1.0454771790509874e-01 2.8576005268584281e-02 -1.5142309608499804e-02 9.9414040450086089e-02 2.8672491181629480e-02 4.2358790179256242e-02 4.7060475073404121e-02 -4.2091627447575167e-03 -2.6585581325532480e-02 1.5387763490503907e-02 -1.5784933473799157e-02 1.8726260965246443e-02 4.1108826674520309e-02 -2.3300999977677136e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -2.3311995605883387e-01 8.1096141583851800e-01 6.2195091123196093e-02 -1.2361971682697162e-02 -7.6888048050396830e-03 3.7870679463504482e-02 -7.4087874705063839e-03 3.3258172484585492e-02 1.2313290280697916e-02 1.5050732921439564e-02 1.0609880790701983e-02 -2.2556734858405984e-02 -1.1984626140565993e-02 1.8139865666097911e-02 1.1170756823885585e-02 6.3193747332708355e-02 1.6158925421568885e-02 5.7700880160550659e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 7.6336599750995471e-01 -4.9938531008546026e-02 2.5239337295747338e-01 1.8639997668460428e-02 1.0446236315749215e-01 -6.0688893271595643e-02 3.3218675247666897e-02 -2.4538794595620982e-02 -7.8220076542554681e-02 6.1042742923807902e-02 1.3852174090606585e-02 -1.8428070076775861e-02 -7.2315473884401729e-03 -1.8375810461830792e-02 -1.7916471736499937e-02 8.2152494184916363e-03 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 7.4971013142029852e-01 -1.0780488681787909e-05 3.7816590028489548e-02 1.0504171229023669e-01 1.4115386089933438e-01 3.2798648658958297e-02 3.5179402694858586e-02 -8.9768326533466326e-03 -2.6365098144625568e-02 -2.2861056794179317e-02 5.5011865623999331e-02 -3.5097141686393059e-02 1.8266577824999373e-02 -2.2210101001727649e-02 -2.3669312310402962e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.5852076039425803e-01 7.4971013142029852e-01 -1.9700077011086958e-01 -6.3393155668512127e-02 8.8645507456122610e-02 -7.4476888528631394e-02 -1.0735330645107288e-02 -4.1523422854215591e-02 -1.0306333569191299e-01 6.8603031831508704e-02 -2.5597139149464508e-02 -1.1638708207046180e-02 6.8885035445860401e-02 5.2576058291361166e-02 -1.0681074400223187e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 7.1532297383481380e-01 -6.7148027086035553e-02 -1.9350523304826511e-01 -6.1641345813978544e-02 -5.0056987188298686e-02 2.4112570363321643e-03 4.0288644097526860e-02 2.5729468778386468e-02 -4.2426776722627568e-02 7.5122998196967744e-02 -3.5798489115094104e-02 2.1288817743821520e-02 2.8888797144592492e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6.9786611116489961e-01 -5.6560913554100867e-02 -2.7376617785332469e-01 4.1127423712467498e-02 1.7657882233339913e-02 -7.5723208883697268e-02 5.4899036110881386e-02 -6.4307066305528673e-03 -2.4763344433161149e-03 -2.3806199367143132e-02 6.1635910808849788e-03 -1.3287296687886554e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 2.4564320910742354e-01 6.9786611116489961e-01 -2.6786163924350775e-02 -4.5274244642927862e-02 -1.3727617804177977e-01 1.4376424822213807e-03 -5.0514730621176243e-03 1.6786770258298729e-02 3.6819709197305692e-02 7.3580746324492574e-02 -6.5587980749630320e-02 -4.1691162779166201e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6.6992204041458503e-01 -2.2132300574371233e-01 -1.8254018089926247e-01 -1.1251496677955387e-01 5.6200131566807664e-02 -6.6245193220739435e-02 -1.4494380073018474e-02 -1.0095741903837907e-02 -1.7834563392687939e-02 -2.4760252507260907e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6.5646610399771088e-01 -1.0542837973638612e-01 1.3593496083289131e-01 5.4970893037900002e-02 1.3047660244646288e-02 7.7643138871559408e-02 -1.0802033391066541e-01 4.3781264297019312e-02 3.1670689436670797e-03 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 6.3777930961465645e-01 2.8160864244756750e-01 8.2058094324422390e-02 -3.4485156871737303e-02 -2.6847505498649862e-02 4.8546010553506463e-02 -4.1945897833440306e-02 -4.2803241369073229e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.7043473295961999e-01 3.1738593938064996e-01 -5.5923288401228385e-02 -1.0308441610400304e-01 5.1310773254762562e-02 8.3856603345378283e-02 3.7967556459956461e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 -7.5267888176843226e-02 5.7043473295961999e-01 1.8372987282321029e-01 -5.0911792968837986e-02 1.8354020528002235e-01 -4.3125442257205743e-02 -2.5836979069287619e-03 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.8226869630632605e-01 1.1217025185929617e-01 -1.1903586129976822e-01 -1.0942153716262973e-01 -2.7576525313763048e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.7320123069154472e-01 -9.9042206214123393e-02 1.0313333219175258e-01 1.0666618368552988e-01 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.5906406143424603e-01 -1.9106433770093331e-01 3.2170076096816713e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.0763761244985934e-02 5.5906406143424603e-01 -6.2841950036869765e-02 
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 5.3444337681612031e-01 
============================================= 1 failed, 2 passed in 485.10s (0:08:05) ==============================================
michalk8 commented 4 years ago

This is because of AttributeError: module 'cellrank.utils.models' has no attribute 'GAM'. The notebooks are currently out-of-date, ut I'm in the process of changing them.

michalk8 commented 4 years ago

Something tells me that sometimes the notebooks aren't even executed - not even the first cell, because enabling the logging, I don't see info message (I should, as I do locally) - I will try local Travis to see if it's true.

Marius1311 commented 4 years ago

okay.

michalk8 commented 4 years ago

Closed via https://github.com/theislab/cellrank_notebooks/commit/fe2f1f6b0d463d039ae2f3b2c7801cb1408c0d7b.

Marius1311 commented 4 years ago

great, thanks.