theislab / mubind

Learning motif contributions to cell transitions using sequence features and graphs.
https://mubind.readthedocs.io
MIT License
27 stars 0 forks source link

mubind

mubind logo

mubind logo

Documentation and tutorials

Please refer to the main documentation and tutorials at

https://mubind.readthedocs.io

https://mubind.readthedocs.io/en/latest/tutorials.html

Model highlights

Workflow and model architecture

mubind workflow

Other specifications

mubind workflow

Installation

There are several alternative options to install mubind:

pip

  1. Install the latest release of mubind from PyPI <https://pypi.org/project/mubind/>_:
pip install mubind
  1. Install the latest development version:
pip install git+https://github.com/theislab/mubind.git@main

Release notes

See the changelog.

Preprint

If mubind is useful for your research, please consider citing as:

Ibarra I.L., Schneeberger J., Erdogan E., Redl L., Martens L., Klein D., Aliee H., and Theis F.J. Learning sequence-based regulatory dynamics in single-cell genomics bioRxiv 2024.08.07.605876 (2024) doi:10.1101/2024.08.07.605876.

Funding acknowledgments.

Issues

If you found a bug, please open an Issue.

Project template created using scverse cookie template