theysy / mml_subroutine_public

UMAT subroutine for Abaqus where all of MML works are included. Enjoy!
MIT License
32 stars 12 forks source link

Information of developer

1. Name: Seongyong Yoon
2. Affiliation: Pohang university of science and technology (POSTECH)
3. Advisor: Frederic Barlat
4. E-mail: theysy@postech.ac.kr

Brief description

- This subroutine is developed to apply various macroscopic plasticty models into sheet metal FE simulations.
- Plasticity theories are modulized and made easy to be appended within UMAT code.
- Various stress update algorithms are available.

Code name

1. MML_U: UMAT subroutine
2. MML_V: VUMAT subroutine

Version information

1. Version 1.0: Macroscopic plasticity models for plane stress
2. Version 2.0: Ver.1 is extended to (2) 3D stress state
3. Version 3.0: Pressure-dependent yield condition
4. Version 2.F: Fracture criterion are coupled with Ver.2

Implemented plasticity models

1. Anisotropic hardening models
    - 0: Isotropic hardening
    - 1: Chaboche-type isotropic-kinematic hardening [9]
    - 2: Yoshida-Uemori kinematic hardening | 2.5: Modified versions [11]
    - 3: HAH11 [2]
    - 4: HAH14 [3]
    - 5: HAH20h | 5.5: HAH20e [14]
    - 6: HEXAH (HAH22) [17]
2. Anisotropic yield functions
    - 1: Von-Mises
    - 2: Hill 1948
    - 3: Yld2000-2d [1]
    - 4: Yld2004-18p [7]
3. Isotropic hardening laws 
    - 1: SWIFT: SIGMA=P1*(P2+EQPLAS)**P3
    - 2: VOCE: SIGMA=P1-P2*EXP(-P3*EQPLAS)
    - 3: MODIFIED VOCE: SIGMA= P1 + P2*EQPLAS + P3*(1-EXP(-P4*EQPLAS))
    - 4: SWIFT+MODIFIED VOCE: P1*(P2+EQPLAS)**P3 + P4 + P5*EQPLAS + P6*(1-EXP(-P7*EQPLAS))
    - 5: HOCKETT-SHERBY: P1-(P1-P2)*EXP(-P3*EQPLAS**P4)
    - 6: COMBINED SWIFT-VOCE: P1*[P2*(P3+EQPLAS)**P4]+(1-P1)*[P5-P6*EXP(-P7*EQPLAS)]
    - 7: MACROSCOPIC RGBV MODEL: P1*[P2+P3*P4*P5*SQRT(RHO(EQPLAS))
 4. Stress update algorithms (Iterative method)
    - 1: CUTTING PLANE METHOD (EXPLICIT)
    - 2: CLOSEST POINT PROJECTION METHOD(FULLY-IMPLICIT)
    - 3: CLOSEST POINT PROJECTION METHOD(SEMI-IMPLICIT)
    - 4: TANGENT MODULUS METHOD
 4. Stress update methods (Fully-explicit)
    - -1: Forward Euler method
    - -2: NON-ITERATIVE STRESS PROJECTION METHOD (CONTIMUUM TANGENT OPERATOR)
    - -3: NON-ITERATIVE STRESS PROJECTION METHOD (CONSISTENT TANGENT OPERATOR)
 5. DIFFERENTIATION METHOD
    - 1: Analytical derivative (Not available)
    - 2: Numerical derivative
 6. Fracture criteria (Only for MML_V2F.FOR)
    - 1: HOSFORD-COLOUMB
    - 2: COCCROFT AND LATHAM
    - 3: RICE AND TRACEY
    - 4: OYANE
    - 5: KO
    - 6: Lou2012
 7. Continuum damage model
    - 1: MODIFIED GTN

Reference

[1] F.BARLAT  ET AL. IJP      (2003): YLD2000-2D
[2] F.BARLAT  ET AL. IJP      (2012): HAH11
[3] F.BARLAT  ET AL. IJP      (2014): HAH14
[4] J.W. LEE  ET AL. IJP      (2012): CUTTING PLANE METHOD
[5] J.W. LEE  ET AL. CMAM     (2012): CLOSEST POINT PROJECTION
[6] J.W. YOON ET AL. IJP      (2004): MULTI-STAGE EULER BACKWARD
[7] F. BARLAT ET AL.  IJP     (2005): YLD2004_18P
[8] H. ARETZ          ESAFORM (2007): SCALED FDM
[9] T.J. PARK ET AT.  IJSS    (2012): CHABOCHE1-SIMPLER MODEL
[10]J.Y. LEE  ET AL.  IJSS    (2012): CHABOCHE2
[11]F. YOSHIDA ET AL. IJP     (2002): YOSHIDA-UEMORI
[12]M. ORTIZ  ET AL.  IJNME   (1985): TANGENT MODULUS METHOD
[13]W.M. SCHERZINGER  CMAME   (2017): LINE SEARCH EULER BACKWARD
[14]F. BARLAT ET AL.  IJSS    (2020): HAH20H & HAH20E
[15]E. RAUCH ET AL.   MSMSE   (2011): RGBV
[16]K. KITAYAMA ET AL.IJP     (2013): CRYSTALLOGRAPHIC RGBV
[17]B. REYNE ET AL.,  IJP     (2022): HEXAH

FRACTURE MODEL REFERENCES

[1]K.H. PACK ET AL.  EFM     (2017): HOSFORD-COULUMB
[2]M.G.COCKCROFT ET AL. JIM  (1968): COCKCROFT
[3]J.R. Rice ET AL.  JMPS    (1969): RICE AND TRACEY
[4]M. OYANE ET AL.   JMWT    (1980): OYANE
[5]Y.K. KO ET AL.    JMPT    (2007): KO
[6]Y. LOU ET AL.     IJSS    (2012): Lou2012
[7]V. TVERGAARD      IJF     (1982): GTN
[8]K. NAHSHON ET AL. EJMAS   (2008): MODIFIED GTN

Publication

[1] Yoon, S., Lee, S.-Y., Barlat, F., 2020. Numerical integration algorithm of updated homogeneous anisotropic hardening model through finite element framework. Comput. Methods Appl. Mech. Eng. 372. https://doi.org/10.1016/j.cma.2020.113449
[2] Yoon, S., Barlat, F., Lee, S.-Y., Kim, J.-H., Wi, M.-S., Kim, D.-J., 2022. Finite element implementation of hydrostatic pressure-sensitive plasticity and its application to distortional hardening model and sheet metal forming simulations. J. Mater. Process. Technol. 302, 117494. https://doi.org/10.1016/J.JMATPROTEC.2022.117494
[3] Yoon, S., Barlat, F., 2023a. Non-iterative stress integration method for anisotropic materials. Int. J. Mech. Sci. 242, 108003. https://doi.org/10.1016/j.ijmecsci.2022.108003.
[4] Yoon, S., Barlat, F., 2023b. Non-iterative stress projection method for anisotropic hardening. Mech. Mater. 183, 104683. https://doi.org/https://doi.org/10.1016/j.mechmat.2023.104683