Information of developer
1. Name: Seongyong Yoon
2. Affiliation: Pohang university of science and technology (POSTECH)
3. Advisor: Frederic Barlat
4. E-mail: theysy@postech.ac.kr
Brief description
- This subroutine is developed to apply various macroscopic plasticty models into sheet metal FE simulations.
- Plasticity theories are modulized and made easy to be appended within UMAT code.
- Various stress update algorithms are available.
Code name
1. MML_U: UMAT subroutine
2. MML_V: VUMAT subroutine
Version information
1. Version 1.0: Macroscopic plasticity models for plane stress
2. Version 2.0: Ver.1 is extended to (2) 3D stress state
3. Version 3.0: Pressure-dependent yield condition
4. Version 2.F: Fracture criterion are coupled with Ver.2
Implemented plasticity models
1. Anisotropic hardening models
- 0: Isotropic hardening
- 1: Chaboche-type isotropic-kinematic hardening [9]
- 2: Yoshida-Uemori kinematic hardening | 2.5: Modified versions [11]
- 3: HAH11 [2]
- 4: HAH14 [3]
- 5: HAH20h | 5.5: HAH20e [14]
- 6: HEXAH (HAH22) [17]
2. Anisotropic yield functions
- 1: Von-Mises
- 2: Hill 1948
- 3: Yld2000-2d [1]
- 4: Yld2004-18p [7]
3. Isotropic hardening laws
- 1: SWIFT: SIGMA=P1*(P2+EQPLAS)**P3
- 2: VOCE: SIGMA=P1-P2*EXP(-P3*EQPLAS)
- 3: MODIFIED VOCE: SIGMA= P1 + P2*EQPLAS + P3*(1-EXP(-P4*EQPLAS))
- 4: SWIFT+MODIFIED VOCE: P1*(P2+EQPLAS)**P3 + P4 + P5*EQPLAS + P6*(1-EXP(-P7*EQPLAS))
- 5: HOCKETT-SHERBY: P1-(P1-P2)*EXP(-P3*EQPLAS**P4)
- 6: COMBINED SWIFT-VOCE: P1*[P2*(P3+EQPLAS)**P4]+(1-P1)*[P5-P6*EXP(-P7*EQPLAS)]
- 7: MACROSCOPIC RGBV MODEL: P1*[P2+P3*P4*P5*SQRT(RHO(EQPLAS))
4. Stress update algorithms (Iterative method)
- 1: CUTTING PLANE METHOD (EXPLICIT)
- 2: CLOSEST POINT PROJECTION METHOD(FULLY-IMPLICIT)
- 3: CLOSEST POINT PROJECTION METHOD(SEMI-IMPLICIT)
- 4: TANGENT MODULUS METHOD
4. Stress update methods (Fully-explicit)
- -1: Forward Euler method
- -2: NON-ITERATIVE STRESS PROJECTION METHOD (CONTIMUUM TANGENT OPERATOR)
- -3: NON-ITERATIVE STRESS PROJECTION METHOD (CONSISTENT TANGENT OPERATOR)
5. DIFFERENTIATION METHOD
- 1: Analytical derivative (Not available)
- 2: Numerical derivative
6. Fracture criteria (Only for MML_V2F.FOR)
- 1: HOSFORD-COLOUMB
- 2: COCCROFT AND LATHAM
- 3: RICE AND TRACEY
- 4: OYANE
- 5: KO
- 6: Lou2012
7. Continuum damage model
- 1: MODIFIED GTN
Reference
[1] F.BARLAT ET AL. IJP (2003): YLD2000-2D
[2] F.BARLAT ET AL. IJP (2012): HAH11
[3] F.BARLAT ET AL. IJP (2014): HAH14
[4] J.W. LEE ET AL. IJP (2012): CUTTING PLANE METHOD
[5] J.W. LEE ET AL. CMAM (2012): CLOSEST POINT PROJECTION
[6] J.W. YOON ET AL. IJP (2004): MULTI-STAGE EULER BACKWARD
[7] F. BARLAT ET AL. IJP (2005): YLD2004_18P
[8] H. ARETZ ESAFORM (2007): SCALED FDM
[9] T.J. PARK ET AT. IJSS (2012): CHABOCHE1-SIMPLER MODEL
[10]J.Y. LEE ET AL. IJSS (2012): CHABOCHE2
[11]F. YOSHIDA ET AL. IJP (2002): YOSHIDA-UEMORI
[12]M. ORTIZ ET AL. IJNME (1985): TANGENT MODULUS METHOD
[13]W.M. SCHERZINGER CMAME (2017): LINE SEARCH EULER BACKWARD
[14]F. BARLAT ET AL. IJSS (2020): HAH20H & HAH20E
[15]E. RAUCH ET AL. MSMSE (2011): RGBV
[16]K. KITAYAMA ET AL.IJP (2013): CRYSTALLOGRAPHIC RGBV
[17]B. REYNE ET AL., IJP (2022): HEXAH
FRACTURE MODEL REFERENCES
[1]K.H. PACK ET AL. EFM (2017): HOSFORD-COULUMB
[2]M.G.COCKCROFT ET AL. JIM (1968): COCKCROFT
[3]J.R. Rice ET AL. JMPS (1969): RICE AND TRACEY
[4]M. OYANE ET AL. JMWT (1980): OYANE
[5]Y.K. KO ET AL. JMPT (2007): KO
[6]Y. LOU ET AL. IJSS (2012): Lou2012
[7]V. TVERGAARD IJF (1982): GTN
[8]K. NAHSHON ET AL. EJMAS (2008): MODIFIED GTN
Publication
[1] Yoon, S., Lee, S.-Y., Barlat, F., 2020. Numerical integration algorithm of updated homogeneous anisotropic hardening model through finite element framework. Comput. Methods Appl. Mech. Eng. 372. https://doi.org/10.1016/j.cma.2020.113449
[2] Yoon, S., Barlat, F., Lee, S.-Y., Kim, J.-H., Wi, M.-S., Kim, D.-J., 2022. Finite element implementation of hydrostatic pressure-sensitive plasticity and its application to distortional hardening model and sheet metal forming simulations. J. Mater. Process. Technol. 302, 117494. https://doi.org/10.1016/J.JMATPROTEC.2022.117494
[3] Yoon, S., Barlat, F., 2023a. Non-iterative stress integration method for anisotropic materials. Int. J. Mech. Sci. 242, 108003. https://doi.org/10.1016/j.ijmecsci.2022.108003.
[4] Yoon, S., Barlat, F., 2023b. Non-iterative stress projection method for anisotropic hardening. Mech. Mater. 183, 104683. https://doi.org/https://doi.org/10.1016/j.mechmat.2023.104683