Codes for the interactive analysis system, OoDAnalyzer, described in our paper "OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples" (TVCG 2021).
Online demo: http://visgroup.thss.tsinghua.edu.cn:8183/
anytree==2.8.0
cffi==1.14.0
fastlapjv==1.0.0
Flask==1.1.2
matplotlib==3.1.3
numpy==1.18.4
Pillow==7.1.2
scikit-learn==0.22.1
scipy==1.4.1
Tested on Windows.
Step 1: create a folder data/
in the root folder.
Step 2: download demo data from Baiduyun(Link: here, password: 7nen) or Google Drive (Link: here, no password), and unpack it in the folder data/
.
Step 3: setup the system:
python server.py
Step 4: visit http://localhost:8183/ with a browser.
If you use this code for your research, please consider citing:
@article{chen2021oodanalyzer,
author={Chen, Changjian and Yuan, Jun and Lu, Yafeng and Liu, Yang and Su, Hang and Yuan, Songtao and Liu, Shixia},
journal={IEEE Transactions on Visualization and Computer Graphics},
title={{OoDAnalyzer}: Interactive Analysis of Out-of-Distribution Samples},
year={2021},
volume={27},
number={7},
pages={3335-3349}}
If you have any problem about our code, feel free to contact
or describe your problem in Issues.