tiendzung-le / cleverhans-models

MIT License
7 stars 2 forks source link

Competition on Adversarial Attacks and Defenses

My code of 3 submissions for 3 sub competitions

The approach

I did not focus on image processing but tried to apply Game Theory in these 3 competitions. And the results showed that this approach worked pretty well.

Defense Against Adversarial Attack: Team cosmos - rank 6

Non-targeted Adversarial Attack: Team cosmos - rank 16

Targeted Adversarial Attack: Team Arrival - rank 7

Models

All models in these submssions are from the tensorflow repository

In order to load different models into one session, the scope should be renamed.

python tensorflow_rename_variables.py --checkpoint_dir=adv_inception_v3.ckpt --output_dir=nips_adv_inception_v3.ckpt --replace_from=InceptionV3 --replace_to=NipsInceptionV3

python tensorflow_rename_variables.py --checkpoint_dir=ens4_adv_inception_v3.ckpt --output_dir=nips04_ens4_adv_inception_v3.ckpt --replace_from=InceptionV3 --replace_to=Nips04InceptionV3

python tensorflow_rename_variables.py --checkpoint_dir=inception_resnet_v2_2016_08_30.ckpt --output_dir=nips_inception_resnet_v2_2016_08_30.ckpt --replace_from=InceptionResnetV2 --replace_to=NipsInceptionResnetV2