Lazily read a subset of data from a folder of images using numpy slicing syntax. Includes simplified but robust file pattern matching syntax and multithreaded file reading. Note: this is not intended to promote a folder of tiffs as a useful way to store lots of information (things like hdf5/n5/klb are preferable). But for data that begins as a folder of tiffs, tifffolder simplifies the process of parsing that folder into data along different axes (and could be used as an intermediate step in the coversion to a better format if desired).
$ pip install tifffolder
Installing tifffolder
from the conda-forge
channel can be achieved by adding conda-forge
to your channels with:
conda config --add channels conda-forge
Once the conda-forge
channel has been enabled, tifffolder
can be installed with:
conda install tifffolder
It is possible to list all of the versions of tifffolder
available on your platform with:
conda search tifffolder --channel conda-forge
>>> from tifffolder import TiffFolder
>>> tf = TiffFolder('/folder/of/tiffs', patterns={'t': '_stack{d4}', 'c': '_ch{d1}'})
# get dataset shape and order of axes
>>> tf.shape
(10, 2, 65, 184, 157) # (nt, nc, nz, ny, nx)
>>> tf.axes
'tczyx'
# reorder data (still experimental)
>>> tf.axes = 'tzcxy'
>>> tf.shape
(10, 65, 2, 157, 184)
# data is only read from disk when explicitly indexed
# get the last 10 Z planes from every other timepoint,
# in the first channel cropping to the middle half in Y
>>> data = tf[::2, 0, -10:, tf.shape[-2] * 1 // 4 : tf.shape[-2] * 3 // 4 ]
>>> data.shape
(5, 10, 92, 157) # (nt, nz, ny, nx)
# Can also be used as an iterator/generator for lazily reading data
>>> for timepoint in tf:
>>> do_something(timepoint)
# or just load the whole thing
>>> alldata = tf.asarray()
>>> alldata.shape == tf.shape
True
# asarray() also accepts any axis kwargs
>>> somedata = tf.asarray(t=range(1,10), c=0)
# Or just to select filenames along certain axes:
>>> tf.select_filenames(t=range(1,10,2), c=0)
['./test_ch0_stack0001_488nm.tif',
'./test_ch0_stack0003_488nm.tif',
'./test_ch0_stack0005_488nm.tif',
'./test_ch0_stack0007_488nm.tif',
'./test_ch0_stack0009_488nm.tif']
tifffolder converts a simplified regex syntax into relatively robust lookahead regex that will match patterns in any order in the filename or fail elegantly.
The TiffFolder class accepts a patterns
parameter (dict or list of two-tuples). For each (key, value) in the patterns
dict:
'x', 'y', 'z', 'c', 't', 's'
){}
will be captured{d}
means match any number of digits{D}
means match any number of NON-digits{}
means match any alphanumeric character (excluding underscore){d2}
means match exactly two digits (for example)For example:
>>> patterns = {
'rel': '_{d7}msec',
'w': '_{d3}nm',
't': '_stack{d4}',
'c': '_ch{d1}',
'cam': 'Cam{D1}'
}
>>> tf = TiffFolder('/folder/of/tiffs', patterns)
>>> tf._parse_filename('cell1_ch0_stack0009_488nm_0034829msec.tif')
{'rel': 34829, 'w': 488, 't': 9, 'c': 0, 'cam': None}
>>> tf._parse_filename('cell1_CamA_ch2_stack0001_560nm_0034829msec.tif')
{'rel': 34829, 'w': 560, 't': 1, 'c': 2, 'cam': 'A'}
>>> tifffolder.build_regex('cam', 'Cam{}')
'(?=.*Cam(?P<cam>[a-zA-Z0-9]+))?'
>>> tifffolder.build_regex('c', '_ch{d1}')
'(?=.*_ch(?P<c>\\d{1}))?'