tronprotocol / java-tron

Java implementation of the Tron whitepaper
GNU Lesser General Public License v3.0
3.75k stars 1.41k forks source link



java-tron

Java implementation of the Tron Protocol

Table of Contents

What's TRON?

TRON is a project dedicated to building the infrastructure for a truly decentralized Internet.

TRON enables large-scale development and engagement. With over 2000 transactions per second (TPS), high concurrency, low latency, and massive data transmission. It is ideal for building decentralized entertainment applications. Free features and incentive systems allow developers to create premium app experiences for users.

Building the Source Code

Building java-tron requires git package and 64-bit version of Oracle JDK 1.8 to be installed, other JDK versions are not supported yet. Make sure you operate on Linux and MacOS operating systems.

Clone the repo and switch to the master branch

$ git clone https://github.com/tronprotocol/java-tron.git
$ cd java-tron
$ git checkout -t origin/master

then run the following command to build java-tron, the FullNode.jar file can be found in java-tron/build/libs/ after build successfully.

$ ./gradlew clean build -x test

Running java-tron

Running java-tron requires 64-bit version of Oracle JDK 1.8 to be installed, other JDK versions are not supported yet. Make sure you operate on Linux and MacOS operating systems.

Get the mainnet configuration file: main_net_config.conf, other network configuration files can be found here.

Hardware Requirements

Minimum:

Recommended:

Running a full node for mainnet

Full node has full historical data, it is the entry point into the TRON network, it can be used by other processes as a gateway into the TRON network via HTTP and GRPC endpoints. You can interact with the TRON network through full node:transfer assets, deploy contracts, interact with contracts and so on. -c parameter specifies a configuration file to run a full node:

$ nohup java -Xms9G -Xmx9G -XX:ReservedCodeCacheSize=256m \
             -XX:MetaspaceSize=256m -XX:MaxMetaspaceSize=512m \
             -XX:MaxDirectMemorySize=1G -XX:+PrintGCDetails \
             -XX:+PrintGCDateStamps  -Xloggc:gc.log \
             -XX:+UseConcMarkSweepGC -XX:NewRatio=2 \
             -XX:+CMSScavengeBeforeRemark -XX:+ParallelRefProcEnabled \
             -XX:+HeapDumpOnOutOfMemoryError \
             -XX:+UseCMSInitiatingOccupancyOnly  -XX:CMSInitiatingOccupancyFraction=70 \
             -jar FullNode.jar -c main_net_config.conf >> start.log 2>&1 &

Running a super representative node for mainnet

Adding the --witness parameter to the startup command, full node will run as a super representative node. The super representative node supports all the functions of the full node and also supports block production. Before running, make sure you have a super representative account and get votes from others. Once the number of obtained votes ranks in the top 27, your super representative node will participate in block production.

Fill in the private key of a super representative address into the localwitness list in the main_net_config.conf. Here is an example:

 localwitness = [
    <your_private_key>
 ]

then run the following command to start the node:

$ nohup java -Xms9G -Xmx9G -XX:ReservedCodeCacheSize=256m \
             -XX:MetaspaceSize=256m -XX:MaxMetaspaceSize=512m \
             -XX:MaxDirectMemorySize=1G -XX:+PrintGCDetails \
             -XX:+PrintGCDateStamps  -Xloggc:gc.log \
             -XX:+UseConcMarkSweepGC -XX:NewRatio=2 \
             -XX:+CMSScavengeBeforeRemark -XX:+ParallelRefProcEnabled \
             -XX:+HeapDumpOnOutOfMemoryError \
             -XX:+UseCMSInitiatingOccupancyOnly  -XX:CMSInitiatingOccupancyFraction=70 \
             -jar FullNode.jar --witness -c main_net_config.conf >> start.log 2>&1 &

Quick Start Tool

An easier way to build and run java-tron is to use start.sh. start.sh is a quick start script written in the Shell language. You can use it to build and run java-tron quickly and easily.

Here are some common use cases of the scripting tool

For more details, please refer to the tool guide.

Run inside Docker container

One of the quickest ways to get java-tron up and running on your machine is by using Docker:

$ docker run -d --name="java-tron" \
             -v /your_path/output-directory:/java-tron/output-directory \
             -v /your_path/logs:/java-tron/logs \
             -p 8090:8090 -p 18888:18888 -p 50051:50051 \
             tronprotocol/java-tron \
             -c /java-tron/config/main_net_config.conf

This will mount the output-directory and logs directories on the host, the docker.sh tool can also be used to simplify the use of docker, see more here.

Community

Tron Developers & SRs is Tron's official Discord channel. Feel free to join this channel if you have any questions.

Core Devs Community is the Telegram channel for java-tron community developers. If you want to contribute to java-tron, please join this channel.

tronprotocol/allcoredev is the official Gitter channel for developers.

Contribution

Thank you for considering to help out with the source code! If you'd like to contribute to java-tron, please see the Contribution Guide for more details.

Resources

Integrity Check

License

java-tron is released under the LGPLv3 license.