Overview
| Developed by | Tryolabs |
| Date of development | Feb 15, 2024 |
| Validator type | Format |
| Blog | |
| License | Apache 2 |
| Input/Output | Output |
Description
Intended Use
This validator checks if a text is related with a topic.
Requirements
Installation
$ guardrails hub install hub://tryolabs/restricttotopic
Usage Examples
Validating string output via Python
In this example, we apply the validator to a string output generated by an LLM.
# Import Guard and Validator
from guardrails.hub import RestrictToTopic
from guardrails import Guard
# Setup Guard
guard = Guard().use(
RestrictToTopic(
valid_topics=["sports"],
invalid_topics=["music"],
disable_classifier=True,
disable_llm=False,
on_fail="exception"
)
)
guard.validate("""
In Super Bowl LVII in 2023, the Chiefs clashed with the Philadelphia Eagles in a fiercely contested battle, ultimately emerging victorious with a score of 38-35.
""") # Validator passes
guard.validate("""
The Beatles were a charismatic English pop-rock band of the 1960s.
""") # Validator fails
Validating JSON output via Python
In this example, we apply the validator to a string field of a JSON output generated by an LLM.
# Import Guard and Validator
from pydantic import BaseModel, Field
from guardrails.hub import RestrictToTopic
from guardrails import Guard
# Initialize Validator
val = RestrictToTopic(
valid_topics=["sports"],
disable_classifier=True,
disable_llm=False,
on_fail="exception"
)
# Create Pydantic BaseModel
class TopicSummary(BaseModel):
topic: str
summary: str = Field(validators=[val])
# Create a Guard to check for valid Pydantic output
guard = Guard.from_pydantic(output_class=TopicSummary)
# Run LLM output generating JSON through guard
guard.parse("""
{
"topic": "Super Bowl LVII",
"summary": "In Super Bowl LVII in 2023, the Chiefs clashed with the Philadelphia Eagles in a fiercely contested battle, ultimately emerging victorious with a score of 38-35."
}
""")
API Reference
__init__(self, on_fail="noop")
Initializes a new instance of the RestrictToTopic class.
**Parameters**
- **`valid_topics`** *(List[str])*: topics that the text should be about (one or many).
- **`invalid_topics`** *(List[str])*: topics that the text cannot be about. Defaults to `[]`.
- **`device`** *(int)*: Device ordinal for CPU/GPU supports for Zero-Shot classifier. Setting this to -1 will leverage CPU, a positive will run the Zero-Shot model on the associated CUDA device id. Defaults to `-1`.
- **`model`** *(str)*: The Zero-Shot model that will be used to classify the topic. See a list of all models here: https://huggingface.co/models?pipeline_tag=zero-shot-classification. Defaults to `facebook/bart-large-mnli`.
- **`llm_callable`** *(Union[str, Callable, None])*: Either the name of the OpenAI model, or a callable that takes a prompt and returns a response. Defaults to `gpt-3.5-turbo`.
- **`disable_classifier`** *(bool)*: Controls whether to use the Zero-Shot model. At least one of `disable_classifier` and `disable_llm` must be `False`. Defaults to `False`.
- **`disable_llm`** *(bool)*: Controls whether to use the LLM fallback. At least one of `disable_classifier` and `disable_llm` must be `False`. Defaults to `False`.
- **`model_threshold`** *(float)*: The threshold used to determine whether to accept a topic from the Zero-Shot model. Must be a number between `0` and `1`. Defaults to `0.5`.
- **`on_fail`** *(str, Callable)*: The policy to enact when a validator fails. If `str`, must be one of `reask`, `fix`, `filter`, `refrain`, `noop`, `exception` or `fix_reask`. Otherwise, must be a function that is called when the validator fails.
validate(self, value, metadata) -> ValidationResult
Validates the given `value` using the rules defined in this validator, relying on the `metadata` provided to customize the validation process. This method is automatically invoked by `guard.parse(...)`, ensuring the validation logic is applied to the input data.
Note:
1. This method should not be called directly by the user. Instead, invoke `guard.parse(...)` where this method will be called internally for each associated Validator.
2. When invoking `guard.parse(...)`, ensure to pass the appropriate `metadata` dictionary that includes keys and values required by this validator. If `guard` is associated with multiple validators, combine all necessary metadata into a single dictionary.
**Parameters**
- **`value`** *(Any)*: The input value to validate.
- **`metadata`** *(dict)*: A dictionary containing metadata required for validation. No additional metadata keys are needed for this validator.