The official implementation of: Activity Trajectory Generation via Modeling Spatiotemporal Dynamics (KDD '22).
pip install -r requirements. txt
command to install all of the Python modules and packages used in this project.run python src/setup.py build_ext --inplace
to create the shared object file in the current directory.
cd src
Use the following command to train ActSTD on Mobile
dataset with different CNF models:
python app.py --data Mobile --model attncnf --tpp neural --l2_attn --ode_method 'scipy_solver' --ode_solver 'RK45' --cuda_id 0 --tpp_style 'gru' --weekhour
python app.py --data Mobile --model jumpcnf --tpp neural --solve_reverse --ode_method 'scipy_solver' --ode_solver 'RK45' --cuda_id 0 --tpp_style 'gru' --weekhour
Use the following command to train ActSTD on Foursquare
dataset with different CNF models:
python app.py --data Foursquare --model attncnf --tpp neural --l2_attn --ode_method 'scipy_solver' --ode_solver 'RK45' --cuda_id 0 --tpp_style 'gru' --weekhour
python app.py --data Foursquare --model jumpcnf --tpp neural --solve_reverse --ode_method 'scipy_solver' --ode_solver 'RK45' --cuda_id 0 --tpp_style 'gru' --weekhour
If you find this repository useful in your research, please consider citing the following paper:
@inproceedings{yuan2022activity,
title={Activity Trajectory Generation via Modeling Spatiotemporal Dynamics},
author={Yuan, Yuan and Ding, Jingtao and Wang, Huandong and Jin, Depeng and Li, Yong},
booktitle={Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
pages={4752--4762},
year={2022}
}
The implemention is based on Neural STPP.