Accepted at: 17th IEEE Computer Society Workshop on Biometrics 2022 (CVPRW'22)
Previous version:
GaitGraph: Graph Convolutional Network for Skeleton-Based Gait Recognition (ICIP'21)
Clone the repository and install the dependencies from requirements.txt
.
You can download pre-trained models from here.
We use PyTorch Lightning CLI for configuration and training.
Train:
# CASIA-B
python3 gaitgraph_casia_b.py fit --config configs/casia_b.yaml
# OUMVLP-Pose (OpenPose)
python3 gaitgraph_oumvlp.py fit --config configs/oumvlp.yaml
# OUMVLP-Pose (AlphaPose)
python3 gaitgraph_oumvlp.py fit --config configs/oumvlp.yaml --data.keypoints alphapose
Test:
python3 gaitgraph_{casia_b,oumvlp}.py predict --config <path_to_config_file> --ckpt_path <path_to_checkpoint> --model.tta True
Logs and checkpoints will be saved to lighting_logs
and can be shown in tensorboard with:
tensorboard --logdir lightning_logs
To run the visualization add run the following command:
python3 gaitgraph_{casia_b,oumvlp}.py predict --config <path_to_config_file> --ckpt_path <path_to_checkpoint> --config configs/draw.yaml --model.tta False
Examples:
If you use GaitGraph2, please use the following BibTeX entry.
@misc{teepe2022gaitgraph2,
doi = {10.48550/ARXIV.2204.07855},
url = {https://arxiv.org/abs/2204.07855},
author = {Teepe, Torben and Gilg, Johannes and Herzog, Fabian and H\"ormann, Stefan and Rigoll, Gerhard},
title = {Towards a Deeper Understanding of Skeleton-based Gait Recognition},
publisher = {arXiv},
year = {2022}
}