PyTorch implementation of Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention based partially on the following projects:
The following notebooks are executable on https://colab.research.google.com :
For audio samples and pretrained models, visit the above notebook links.
The English TTS uses the LJ-Speech dataset.
python dl_and_preprop_dataset.py --dataset=ljspeech
python train-text2mel.py --dataset=ljspeech
python train-ssrn.py --dataset=ljspeech
python synthesize.py --dataset=ljspeech
samples
folder.The Mongolian text-to-speech uses 5 hours audio from the Mongolian Bible.
python dl_and_preprop_dataset.py --dataset=mbspeech
python train-text2mel.py --dataset=mbspeech
python train-ssrn.py --dataset=mbspeech
python synthesize.py --dataset=mbspeech
samples
folder.