Open X02cinnamondirty opened 3 months ago
I apologise for the delay in replying. The quant_data here is what you get after quantification earlier (each row is a peak, each column is a sample or time point). If your data is in time order, then you need to arrange the data from left to right according to the time order. spm_data is just filtering some difference peaks on the basis of quant_data.
BTW, what difficulties are you experiencing now?
Sorry for bordering.I am reading the origin code and thinking about running the code from the midway point.And now I am confused with the function addAnnotation(),and I found it's a necessary part,but I dont know what is the gene_bed,and I have seen the code of snakemake too,I cant find the code about gene_bed and gtf,I see snakemake ask to offer GFF3,maybe I miss that part about gene_bed ,can you tell me what the code is ? By the way,I try to use the normalized count(peakset) from DiffBind(dba.count and dba.normalize) to as the quant_data,it works,and I think time course analyse is only acoording to the RANK?,so whether its CPM\RPKM or what,the numeric size will not influence the result, am I right?
------------------ 原始邮件 ------------------ 发件人: "tzhu-bio/cisDynet" @.>; 发送时间: 2024年7月19日(星期五) 上午9:30 @.>; @.**@.>; 主题: Re: [tzhu-bio/cisDynet] Question about time course analyse (Issue #12)
I apologise for the delay in replying. The quant_data here is what you get after quantification earlier (each row is a peak, each column is a sample or time point). If your data is in time order, then you need to arrange the data from left to right according to the time order. spm_data is just filtering some difference peaks on the basis of quant_data.
BTW, what difficulties are you experiencing now?
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
You can follow these files and tutorial to prepare your own annotation file.
In principle, the results obtained using DiffBind do not affect the timing analysis. However, I strongly recommend using cisDynet pipeline, as it incorporates peak2gene information necessary for calculating fitted ATAC and RNA.
Thank you.
------------------ 原始邮件 ------------------ 发件人: "tzhu-bio/cisDynet" @.>; 发送时间: 2024年7月19日(星期五) 上午10:27 @.>; @.**@.>; 主题: Re: [tzhu-bio/cisDynet] Question about time course analyse (Issue #12)
You can follow these files and tutorial to prepare your own annotation file.
In principle, the results obtained using DiffBind do not affect the timing analysis. However, I strongly recommend using cisDynet pipeline, as it incorporates peak2gene information necessary for calculating fitted ATAC and RNA.
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
Sorry for bordering again. I wonder that if I use the normalized-width-peakset [like use dba.counts(summits=100),it normalize all peak in the same width]in annoMergedPeaks and getPeak2Gene,will it influence the correctness of calculations (especially the correlation coefficient of peak2gene)?
------------------ 原始邮件 ------------------ 发件人: "tzhu-bio/cisDynet" @.>; 发送时间: 2024年7月19日(星期五) 上午10:27 @.>; @.**@.>; 主题: Re: [tzhu-bio/cisDynet] Question about time course analyse (Issue #12)
You can follow these files and tutorial to prepare your own annotation file.
In principle, the results obtained using DiffBind do not affect the timing analysis. However, I strongly recommend using cisDynet pipeline, as it incorporates peak2gene information necessary for calculating fitted ATAC and RNA.
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
Hey,I am facing a new problem now and sorry for bordering again,when I use the function getTimeRNA,I notice that the start of time point is associated with the Z-score>1.9,[column_idx <- which(df[1, ] > 1.9)[1]],but in my dataframe(the first gene),all the score is smaller than 1.9,what's that mean? and i got an error of the column_idx to be NA.Here is a part of my df, is it right?should I choose the column 135 to be the first timepoint?
head(df) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,47] [,48] [,49] [,50] [,51] [,52] [,53] [,54] [,55] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,56] [,57] [,58] [,59] [,60] [,61] [,62] [,63] [,64] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,74] [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,83] [,84] [,85] [,86] [,87] [,88] [,89] [,90] [,91] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 -2 [,92] [,93] [,94] [,95] [,96] [,97] [,98] [,99] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 -2 [,100] [,101] [,102] [,103] [,104] [,105] [,106] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 [,107] [,108] [,109] [,110] [,111] [,112] [,113] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 [,114] [,115] [,116] [,117] [,118] [,119] [,120] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 [,121] [,122] [,123] [,124] [,125] [,126] [,127] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 [,128] [,129] [,130] [,131] [,132] [,133] [,134] chr11:115494588-115494788 -2 -2 -2 -2 -2 -2 -2 chr4:156077450-156077650 -2 -2 -2 -2 -2 -2 -2 chr10:13745391-13745591 -2 -2 -2 -2 -2 -2 -2 chr15:79400406-79400606 -2 -2 -2 -2 -2 -2 -2 chr1:192924697-192924897 -2 -2 -2 -2 -2 -2 -2 chr2:32737312-32737512 -2 -2 -2 -2 -2 -2 -2 [,135] [,136] [,137] [,138] chr11:115494588-115494788 0.90240820 0.90140381 0.90039946 0.89939513 chr4:156077450-156077650 0.56758941 0.56634535 0.56510263 0.56386124 chr10:13745391-13745591 0.72592477 0.72819672 0.73046245 0.73272197 chr15:79400406-79400606 -0.02327534 -0.01991515 -0.01656218 -0.01321643 chr1:192924697-192924897 0.71092805 0.71462510 0.71831301 0.72199175 chr2:32737312-32737512 1.41660355 1.41429264 1.41198353 1.40967619 [,139] [,140] [,141] [,142] chr11:115494588-115494788 0.898390843 0.897386580 0.896382345 8.953781e-01 chr4:156077450-156077650 0.562621178 0.561382447 0.560145042 5.589090e-01 chr10:13745391-13745591 0.734975294 0.737222424 0.739463371 7.416981e-01 chr15:79400406-79400606 -0.009877907 -0.006546613 -0.003222551 9.427624e-05 chr1:192924697-192924897 0.725661310 0.729321672 0.732972824 7.366147e-01 chr2:32737312-32737512 1.407370633 1.405066834 1.402764788 1.400464e+00 [,143] [,144] [,145] [,146] chr11:115494588-115494788 0.894373946 0.893369779 0.89236563 0.89136150 chr4:156077450-156077650 0.557674196 0.556440750 0.55520862 0.55397780 chr10:13745391-13745591 0.743926742 0.746149182 0.74836547 0.75057561 chr15:79400406-79400606 0.003403866 0.006706214 0.01000132 0.01328918 chr1:192924697-192924897 0.740247433 0.743870861 0.74748502 0.75108989 chr2:32737312-32737512 1.398165910 1.395869058 1.39357392 1.39128048
You can try normalized-width-peakset and the difference shouldn't be too much.
You can refer to this issue.
BTW, could you provide the full dataframe so I can see what exactly is wrong?
OK,Here is the RDS、TPM and error df table I got in the attachment.
------------------ 原始邮件 ------------------ 发件人: "tzhu-bio/cisDynet" @.>; 发送时间: 2024年7月20日(星期六) 上午8:51 @.>; @.**@.>; 主题: Re: [tzhu-bio/cisDynet] Question about time course analyse (Issue #12)
You can try normalized-width-peakset and the difference shouldn't be too much.
You can refer to this issue.
BTW, could you provide the full dataframe so I can see what exactly is wrong?
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
从QQ邮箱发来的超大附件
error_df.txt (46.88M, 无限期)进入下载页面:http://mail.qq.com/cgi-bin/ftnExs_download?t=exs_ftn_download&k=78626161459e25c9f284195b1564061b411603075257030214500550504955015f534c0752025119580607500756010d08500359336834514b100e136c00521a4d1a15610e&code=9baa3d44
Peak2Gene_All_Links.rds (5.66M, 无限期)进入下载页面:http://mail.qq.com/cgi-bin/ftnExs_download?t=exs_ftn_download&k=79366131ed4996c9fed0190b133301194d42530005070453180257010c1e510703054c015105001b0605580306515152050356543524336650570a0372565d536a770d5d6a7f5a585e454f435140330b&code=56a15336
H2D_RNA_TPM.tsv (3.63M, 无限期)进入下载页面:http://mail.qq.com/cgi-bin/ftnExs_download?t=exs_ftn_download&k=73393239f8eba69efcdf4a031134514e4f4d565c075657541a5c515b5619530456001f0900005a4c550f005b04505a040201040a373b6329057d6d6b79753c3567741c4d4442635c&code=792974ca
Please send me the dynamic ocrs file.
ok,here is the dynamic_ocrs.By the way,I use getSpecificPeak but not getTopSpecificPeak.
------------------ 原始邮件 ------------------ 发件人: "tzhu-bio/cisDynet" @.>; 发送时间: 2024年7月20日(星期六) 中午11:18 @.>; @.**@.>; 主题: Re: [tzhu-bio/cisDynet] Question about time course analyse (Issue #12)
Please send me the dynamic ocrs file.
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
从QQ邮箱发来的超大附件
dynamic_ocrs.txt (2.08M, 无限期)进入下载页面:https://mail.qq.com/cgi-bin/ftnExs_download?k=72336231b7f3bc9dfcd51a0b1133504d4f475250550550511a520301521e060602504f520e51564f5356575454000055530b5653372362064e5d035c5e503d0d5441111f434b16620a&t=exs_ftn_download&code=73b173bb
I have fixed the error. Please install the latest version.
Thank you!
------------------ 原始邮件 ------------------ 发件人: "tzhu-bio/cisDynet" @.>; 发送时间: 2024年7月20日(星期六) 下午3:34 @.>; @.**@.>; 主题: Re: [tzhu-bio/cisDynet] Question about time course analyse (Issue #12)
I have fixed the error. Please install the latest version.
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>
I have fixed the error. Please install the latest version.
And the code in plotTimeAll sould be fixed in the same way maybe?
Sorry, please install again.
Sorry, please install again. OK(ゝω・´★)
I’ve seen the code and manual about time course data like dynamic_ocrs <- getTopSpecifcPeaks(spm_data = spm, norm_data = quant_data, top_N = 1000, save_path = "F:/cisDynet/example/", file_prefix = "Top1000_raw_data") and getTimeATAC(norm_data = dynamic_ocrs),but I cant find the data associated with time. Can you tell me the standard format of data to describe time series in like quant_data or spm_data?I've seen the all quant data you provided but Ithink it may cant fix my trouble?