uzh-dqbm-cmi / PRIDICT

Prime editing guide RNA prediction
https://pridict.it/
MIT License
7 stars 5 forks source link
crispr-cas9 deep-learning machine-learning prime-editing

πŸ“£ πŸ“£ πŸ“£ Update: Check out PRIDICT2.0 from our updated study here. πŸ“£ πŸ“£ πŸ“£

PRIDICT: PRIme editing guide RNA preDICTion

PRIDICT logo

For accessing Supplementary Files, click here.

Repository containing python package for running trained PRIDICT (PRIme editing guide RNA preDICTion) models. prieml package includes modules to setup and run PRIDICT models for predicting prime editing efficiency and product purity.

To run PRIDICT online, see our webapp.


Installation using Anaconda (Linux and Mac OS) 🐍

πŸ“£ PRIDICT can only be installed on Linux and Mac OS since ViennaRNA package is not available for Windows πŸ“£

The easiest way to install and manage Python packages on various OS platforms is through Anaconda. Once installed, any package (even if not available on Anaconda channel) could be installed using pip.


Running PRIDICT in 'manual' mode:

Required:

python pridict_pegRNA_design.py manual --sequence-name seq1 --sequence 'GCCTGGAGGTGTCTGGGTCCCTCCCCCACCCGACTACTTCACTCTCTGTCCTCTCTGCCCAGGAGCCCAGGATGTGCGAGTTCAAGTGGCTACGGCCGA(G/C)GTGCGAGGCCAGCTCGGGGGCACCGTGGAGCTGCCGTGCCACCTGCTGCCACCTGTTCCTGGACTGTACATCTCCCTGGTGACCTGGCAGCGCCCAGATGCACCTGCGAACCACCAGAATGTGGCCGC'

--------------------------

### Running in batch mode:
  ####  Required:
  -  `--input-fname`: input file name - name of csv file that has two columns [`editseq`, `sequence_name`]. See `batch_template.csv` in the `./input` folder
  ####  Optional:
  -  `--input-dir` : directory where the input csv file is found on disk
  -  `--output-dir`: directory on disk where to dump results (default: `./predictions`)
  -  `--output-fname`: output filename used for the saved results
  -  `--use-5folds`: Use all 5-folds trained models. Default is to use fold-1 model
  -  `--cores`: Number of cores to use for multiprocessing. Default value 0 uses all available cores.
  -  `--nicking`: Additionally, design nicking guides for edit (PE3) with DeepSpCas9 prediction.
  -  `--ngsprimer`: Additionally, design NGS primers for edit based on Primer3 design.
```shell

 python pridict_pegRNA_design.py batch --input-fname batch_example_file.csv --output-fname batchseqs

Citation

If you find our work is useful in your research, please cite the following paper:

@article {Mathis et al.,
author = {Mathis, Nicolas and Allam, Ahmed and Kissling, Lucas and Marquart, Kim Fabiano and Schmidheini, Lukas and Solari, Cristina and BalΓ‘zs, Zsolt and Krauthammer, Michael and Schwank, Gerald},
title = {Predicting prime editing efficiency and product purity by deep learning},
year = {2023},
doi = {10.1038/s41587-022-01613-7},
URL = { https://www.nature.com/articles/s41587-022-01613-7 },
journal = {Nature Biotechnology}
}