v0lta / Jax-Wavelet-Toolbox

Differentiable and gpu enabled fast wavelet transforms in JAX.
European Union Public License 1.2
40 stars 2 forks source link
fwt jax python wavelet-packets wavelet-transform wavelets

.. |favicon| image:: https://raw.githubusercontent.com/v0lta/Jax-Wavelet-Toolbox/master/docs/favicon/favicon.ico :alt: Shannon-wavelet favicon :width: 32 :target: https://pypi.org/project/jaxwt/


|favicon| Jax Wavelet Toolbox (jaxwt)


.. image:: https://github.com/v0lta/Jax-Wavelet-Toolbox/actions/workflows/tests.yml/badge.svg :target: https://github.com/v0lta/Jax-Wavelet-Toolbox/actions/workflows/tests.yml :alt: GitHub Actions

.. image:: https://readthedocs.org/projects/jax-wavelet-toolbox/badge/?version=latest :target: https://jax-wavelet-toolbox.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

.. image:: https://img.shields.io/pypi/pyversions/jaxwt :target: https://pypi.org/project/jaxwt/ :alt: PyPI Versions

.. image:: https://img.shields.io/pypi/v/jaxwt :target: https://pypi.org/project/jaxwt/ :alt: PyPI - Project

.. image:: https://img.shields.io/pypi/l/jaxwt :target: https://github.com/v0lta/Jax-Wavelet-Toolbox/blob/master/LICENSE :alt: PyPI - License

.. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black :alt: Black code style

.. image:: https://static.pepy.tech/personalized-badge/jaxwt?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads :target: https://pepy.tech/project/jaxwt :alt: PyPi - downloads

Differentiable and GPU-enabled fast wavelet transforms in JAX.

Features """"""""

This toolbox extends PyWavelets <https://pywavelets.readthedocs.io/en/latest/>_. We additionally provide GPU and gradient support via a Jax backend.

Installation """""""""""" To install Jax, head over to https://github.com/google/jax#installation and follow the procedure described there. Afterward, type pip install jaxwt to install the Jax-Wavelet-Toolbox. You can uninstall it later by typing pip uninstall jaxwt.

Documentation """"""""""""" Complete documentation of all toolbox functions is available at readthedocs <https://jax-wavelet-toolbox.readthedocs.io/en/latest/jaxwt.html>_.

Transform Examples: """""""""""""""""""

To compute a one-dimensional fast wavelet transform, consider the code snippet below:

.. code-block:: python

import jax.numpy as jnp import jaxwt as jwt

import pywt import numpy as np;

generate an input of even length.

data = jnp.array([0., 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0])

compare the forward fwt coefficients

print(pywt.wavedec(np.array(data), 'haar', mode='zero', level=2)) print(jwt.wavedec(data, 'haar', mode='zero', level=2))

invert the fwt.

print(jwt.waverec(jwt.wavedec(data, 'haar', mode='zero', level=2), 'haar'))

The snipped also evaluates the pywt implementation to demonstrate that the coefficients are the same. Use jaxwt if you require gradient or GPU support.

The process for two-dimensional fast wavelet transforms works similarly:

.. code-block:: python

import jaxwt as jwt import jax.numpy as jnp from scipy.datasets import face

image = jnp.transpose( face(), [2, 0, 1]).astype(jnp.float32) transformed = jwt.wavedec2(image, "haar", level=2, mode="reflect") reconstruction = jwt.waverec2(transformed, "haar") jnp.max(jnp.abs(image - reconstruction))

jaxwt allows transforming batched data. The example above moves the color channel to the front because wavedec2 transforms the last two axes by default. We can avoid doing so by using the axes argument. Consider the batched example below:

.. code-block:: python

import jaxwt as jwt import jax.numpy as jnp from scipy.datasets import face

image = jnp.stack( [face(), face(), face()], axis=0 ).astype(jnp.float32) transformed = jwt.wavedec2(image, "haar", level=2, mode="reflect", axes=(1,2)) reconstruction = jwt.waverec2(transformed, "haar", axes=(1,2)) jnp.max(jnp.abs(image - reconstruction))

For more code examples, follow the documentation link above or visit the examples <https://github.com/v0lta/Jax-Wavelet-Toolbox/tree/master/examples>_ folder.

Testing """"""" Unit tests are handled by nox. Clone the repository and run it with the following:

.. code-block:: sh

$ pip install nox
$ git clone https://github.com/v0lta/Jax-Wavelet-Toolbox
$ cd Jax-Wavelet-Toolbox
$ nox -s test

Goals """""

64-Bit floating-point numbers """"""""""""""""""""""""""""" If you need 64-bit floating point support, set the Jax config flag:

.. code-block:: python

from jax.config import config
config.update("jax_enable_x64", True)

Citation """""""""""

If you use this work in a scientific context, please cite the following:

.. code-block::

@phdthesis{handle:20.500.11811/9245, urn: https://nbn-resolving.org/urn:nbn:de:hbz:5-63361, author = {{Moritz Wolter}}, title = {Frequency Domain Methods in Recurrent Neural Networks for Sequential Data Processing}, school = {Rheinische Friedrich-Wilhelms-Universität Bonn}, year = 2021, month = jul, url = {https://hdl.handle.net/20.500.11811/9245} }