.. |favicon| image:: https://raw.githubusercontent.com/v0lta/Jax-Wavelet-Toolbox/master/docs/favicon/favicon.ico :alt: Shannon-wavelet favicon :width: 32 :target: https://pypi.org/project/jaxwt/
|favicon| Jax Wavelet Toolbox (jaxwt)
.. image:: https://github.com/v0lta/Jax-Wavelet-Toolbox/actions/workflows/tests.yml/badge.svg :target: https://github.com/v0lta/Jax-Wavelet-Toolbox/actions/workflows/tests.yml :alt: GitHub Actions
.. image:: https://readthedocs.org/projects/jax-wavelet-toolbox/badge/?version=latest :target: https://jax-wavelet-toolbox.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status
.. image:: https://img.shields.io/pypi/pyversions/jaxwt :target: https://pypi.org/project/jaxwt/ :alt: PyPI Versions
.. image:: https://img.shields.io/pypi/v/jaxwt :target: https://pypi.org/project/jaxwt/ :alt: PyPI - Project
.. image:: https://img.shields.io/pypi/l/jaxwt :target: https://github.com/v0lta/Jax-Wavelet-Toolbox/blob/master/LICENSE :alt: PyPI - License
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black :alt: Black code style
.. image:: https://static.pepy.tech/personalized-badge/jaxwt?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads :target: https://pepy.tech/project/jaxwt :alt: PyPi - downloads
Differentiable and GPU-enabled fast wavelet transforms in JAX.
Features """"""""
wavedec
and waverec
implement 1d analysis and synthesis transforms.wavedec2
and waverec2
provide 2d transform support.cwt
-function supports 1d continuous wavelet transforms.WaveletPacket
object supports 1d wavelet packet transforms.WaveletPacket2d
implements two-dimensional wavelet packet transforms.swt
and iswt
allow 1d-stationary transformations.This toolbox extends PyWavelets <https://pywavelets.readthedocs.io/en/latest/>
_.
We additionally provide GPU and gradient support via a Jax backend.
Installation
""""""""""""
To install Jax, head over to https://github.com/google/jax#installation and follow the procedure described there.
Afterward, type pip install jaxwt
to install the Jax-Wavelet-Toolbox. You can uninstall it later by typing pip uninstall jaxwt
.
Documentation
"""""""""""""
Complete documentation of all toolbox functions is available at
readthedocs <https://jax-wavelet-toolbox.readthedocs.io/en/latest/jaxwt.html>
_.
Transform Examples: """""""""""""""""""
To compute a one-dimensional fast wavelet transform, consider the code snippet below:
.. code-block:: python
import jax.numpy as jnp import jaxwt as jwt
import pywt import numpy as np;
data = jnp.array([0., 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0])
print(pywt.wavedec(np.array(data), 'haar', mode='zero', level=2)) print(jwt.wavedec(data, 'haar', mode='zero', level=2))
print(jwt.waverec(jwt.wavedec(data, 'haar', mode='zero', level=2), 'haar'))
The snipped also evaluates the pywt
implementation to demonstrate that the coefficients are the same.
Use jaxwt
if you require gradient or GPU support.
The process for two-dimensional fast wavelet transforms works similarly:
.. code-block:: python
import jaxwt as jwt import jax.numpy as jnp from scipy.datasets import face
image = jnp.transpose( face(), [2, 0, 1]).astype(jnp.float32) transformed = jwt.wavedec2(image, "haar", level=2, mode="reflect") reconstruction = jwt.waverec2(transformed, "haar") jnp.max(jnp.abs(image - reconstruction))
jaxwt
allows transforming batched data.
The example above moves the color channel to the front because wavedec2 transforms the last two axes by default.
We can avoid doing so by using the axes
argument. Consider the batched example below:
.. code-block:: python
import jaxwt as jwt import jax.numpy as jnp from scipy.datasets import face
image = jnp.stack( [face(), face(), face()], axis=0 ).astype(jnp.float32) transformed = jwt.wavedec2(image, "haar", level=2, mode="reflect", axes=(1,2)) reconstruction = jwt.waverec2(transformed, "haar", axes=(1,2)) jnp.max(jnp.abs(image - reconstruction))
For more code examples, follow the documentation link above or visit
the examples <https://github.com/v0lta/Jax-Wavelet-Toolbox/tree/master/examples>
_ folder.
Testing
"""""""
Unit tests are handled by nox
. Clone the repository and run it with the following:
.. code-block:: sh
$ pip install nox
$ git clone https://github.com/v0lta/Jax-Wavelet-Toolbox
$ cd Jax-Wavelet-Toolbox
$ nox -s test
Goals """""
64-Bit floating-point numbers """"""""""""""""""""""""""""" If you need 64-bit floating point support, set the Jax config flag:
.. code-block:: python
from jax.config import config
config.update("jax_enable_x64", True)
Citation """""""""""
If you use this work in a scientific context, please cite the following:
.. code-block::
@phdthesis{handle:20.500.11811/9245, urn: https://nbn-resolving.org/urn:nbn:de:hbz:5-63361, author = {{Moritz Wolter}}, title = {Frequency Domain Methods in Recurrent Neural Networks for Sequential Data Processing}, school = {Rheinische Friedrich-Wilhelms-Universität Bonn}, year = 2021, month = jul, url = {https://hdl.handle.net/20.500.11811/9245} }