vectorengine / vectorsql

VectorSQL is a free analytics DBMS for IoT & Big Data, compatible with ClickHouse.
https://github.com/vectorengine/vectordb
Apache License 2.0
287 stars 54 forks source link
clickhouse column-store distributed-database iot olap pipeline reactive stream-processing

NOTICE: This project have moved to Databend

VectorSQL Logo

Github Actions Status Github Actions Status Github Actions Status codecov.io License

VectorSQL is a free analytics DBMS for IoT & Big Data, compatible with ClickHouse.

Features

Server

$git clone https://github.com/vectorengine/vectorsql
$cd vectorsql
$make build
$./bin/vectorsql-server -c conf/vectorsql-default.toml

 2020/01/27 19:02:39.245654      [DEBUG]    Database->Attach Table:system.tables, engine:SYSTEM_TABLES <attachTable@database_system.go:116>
 2020/01/27 19:02:39.245670      [DEBUG]    Database->Attach Table:system.databases, engine:SYSTEM_DATABASES <attachTable@database_system.go:116>
 2020/01/27 19:02:39.245680      [INFO]     Database->Load Database:system <loadSystemDatabases@databases.go:110>
 2020/01/27 19:02:39.245794      [INFO]     Listening for connections with native protocol (tcp)::9000 <Start@server.go:33>
 2020/01/27 19:02:39.245806      [INFO]     Servers start... <main@server.go:62>

Client

$clickhouse-client --compression=0
VectorSQL :) SELECT SUM(IF(status!=200, 1, 0)) AS errors, SUM(IF(status=200, 1, 0)) as success, (errors/COUNT(server)) AS error_rate,(success/COUNT(server)) as success_rate, (SUM(response_time)/COUNT(server)) AS load_avg, MIN(response_time), MAX(response_time), path, server FROM logmock(rows->15) GROUP BY server, path HAVING errors>0 ORDER BY server ASC, load_avg DESC;

SELECT 
    SUM(IF(status != 200, 1, 0)) AS errors, 
    SUM(IF(status = 200, 1, 0)) AS success, 
    errors / COUNT(server) AS error_rate, 
    success / COUNT(server) AS success_rate, 
    SUM(response_time) / COUNT(server) AS load_avg, 
    MIN(response_time), 
    MAX(response_time), 
    path, 
    server
FROM logmock(rows -> 15)
GROUP BY 
    server, 
    path
HAVING errors > 0
ORDER BY 
    server ASC, 
    load_avg DESC

┌─errors─┬─success─┬─error_rate─┬─success_rate─┬─load_avg─┬─MIN(response_time)─┬─MAX(response_time)─┬─path───┬─server──────┐
│      2 │       1 │     0.6667 │       0.3333 │       12 │                 10 │                 13 │ /login │ 192.168.0.1 │
│      1 │       5 │     0.1667 │       0.8333 │  11.1667 │                 10 │                 12 │ /index │ 192.168.0.1 │
│      1 │       3 │       0.25 │         0.75 │    11.25 │                 10 │                 14 │ /index │ 192.168.0.2 │
│      1 │       1 │        0.5 │          0.5 │       11 │                 10 │                 12 │ /login │ 192.168.0.2 │
└────────┴─────────┴────────────┴──────────────┴──────────┴────────────────────┴────────────────────┴────────┴─────────────┘
↓ Progress: 0.00 rows, 0.00 B (0.00 rows/s., 0.00 B/s.) 
4 rows in set. Elapsed: 0.005 sec. 
curl -XPOST http://127.0.0.1:8123 -d "SELECT SUM(IF(status!=200, 1, 0)) AS errors, SUM(IF(status=200, 1, 0)) as success, (errors/COUNT(server)) AS error_rate,(success/COUNT(server)) as success_rate, (SUM(response_time)/COUNT(server)) AS load_avg, MIN(response_time), MAX(response_time), path, server FROM logmock(rows->15) GROUP BY server, path HAVING errors>0 ORDER BY server ASC, load_avg DESC"
2   1   0.6667  0.3333  12.0000 10  13  /login  192.168.0.1
1   5   0.1667  0.8333  11.1667 10  12  /index  192.168.0.1
1   3   0.2500  0.7500  11.2500 10  14  /index  192.168.0.2
1   1   0.5000  0.5000  11.0000 10  12  /login  192.168.0.2

Query Language Features

Query language Current version Future versions Example
Scans by Value + + SELECT a,b
Scans by Expression + + SELECT IF(a>2,a,b),SUM(a)
Filter by Value + + WHERE a>10
Filter by Expression + + WHERE a>(b+10)
Group-Aggregate by Value + + GROUP BY a
Group-Aggregate by Expression + + GROUP BY (a+1)
Group-Having by Value + + HAVING count_a>2
Group-Having by Expression + + HAVING (count_a+1)>2
Order by Value + + ORDER BY a desc
Order by Expression + + ORDER BY (a+b)
Window Functions - +
Common Table Expressions - +
Join - +

Performance

Query Cost(second)
SELECT COUNT(id) FROM testdata 0.269s
SELECT COUNT(id) FROM testdata WHERE id!=0 0.438s
SELECT SUM(data1) FROM testdata 0.287s
SELECT SUM(data1) AS sum, COUNT(data1) AS count, sum/count AS avg FROM testdata 1.814s
SELECT MAX(id), MIN(id) FROM testdata 0.473s
SELECT COUNT(data1) AS count, data1 FROM testdata GROUP BY data1 ORDER BY count DESC LIMIT 10 0.728s
SELECT email FROM testdata WHERE email like '%20@example.com%' LIMIT 1 0.076s
SELECT COUNT(email) FROM testdata WHERE email like '%20@example.com%' 1.470s
SELECT data1 AS x, x - 1, x - 2, x - 3, count(data1) AS c FROM testdata GROUP BY x, x - 1, x - 2, x - 3 ORDER BY c DESC LIMIT 10 2.396s

Metrics

http://localhost:8080/debug/metrics