vignywang / MTLDesc

MIT License
31 stars 3 forks source link

MTLDesc (Local features detection and description)

Implementation of "MTLDesc: Looking Wider to Describe Better " (AAAI 2022).

Keywords: Local features detection and description; local descriptors; image matching.

To do:

Requirement

pip install -r requirement.txt,

Quick start

HPatches Image Matching Benchmark

1.Download the trained model: https://drive.google.com/file/d/1qrvdd3KVYFl6EwH8s5IS5p_Hs26xIKRD/view?usp=sharing and place it in the "ckpt/mtldesc".

2.Download the HPatches dataset:

cd evaluation_hpatch/hpatches_sequences
bash download.sh

3.Extract local descriptors:

cd evaluation_hpatch
CUDA_VISIBLE_DEVICES=0 python export.py  --tag [Descriptor_suffix_name] --top-k 10000 --output_root [out_dir] --config ../configs/MTLDesc_eva.yaml

4.Evaluation

cd evaluation_hpatch/hpatches_sequences
jupyter-notebook

run HPatches-Sequences-Matching-Benchmark.ipynb

Training

Download dataset: https://drive.google.com/file/d/1Uz0hVFPxWsE71V77kXZ973iY2GuXC20b/view?usp=sharing

Set the dataset path in the configuration file configs/MTLDesc_train.yaml

mega_image_dir:  /data/Mega_train/image   #images
mega_keypoint_dir:  /data/Mega_train/keypoint #keypoints
mega_despoint_dir:  /data/Mega_train/despoint #descriptor correspondence points
python train.py --gpus 0 --configs configs/MTLDesc_train.yaml --indicator mtldesc

Citation

@inproceedings{wang2022mtldesc,
  title={MTLDesc: Looking Wider to Describe Better},
  author={Wang, Changwei and Xu, Rongtao and Zhang, Yuyang and Xu, Shibiao and Meng, Weiliang and Fan, Bin and Zhang, Xiaopeng},
  booktitle={AAAI},
  year={2022},
  organization={AAAI Press}
}