vineetm / ell-881-2018-deep-learning

Course Materials for ELL 881 2018: Fundamentals of Deep Learning
9 stars 7 forks source link

ell-881-2018-deep-learning

ELL 881 2018: Fundamentals of Deep Learning

Instructors: Raghavendra Singh @raghavsi & Vineet Kumar @vineetm

Teaching Assistants (TAs): Aravind @Maxaravind & Vinay @VinayKyatham

Course Objectives

Master the fundamentals of Deep Learning and implement the ideas learnt in Tensorflow.

Course Syllabus and Schedule (Tentative)

Lecture Contents Readings
Lec 01 (27 July) Introduction; Logistics; Linear Algebra; Probability & Information Theory Ch 01, 02, 03
Lec 02 (03 Aug) Numerical Computation; Machine Learning Basics Ch 04, 05
Lec 03a (08 Aug) Deep Feedforward Networks Ch 06
Lec 03b (10 Aug) Computational Graphs; Backprop Ch 06
Lec 04a (29 Aug) Tensorflow, Regularization
Lec 04b (31 Aug) Regularization
Lec 05a (05 Sep) NLP Basics, NLP data pipeline Stanford CS230 Blog
Lec 05b (07 Sep) Word2Vec Paper,Blog
Lec 06a (12 Sep) Word2Vec (Contd.) RNN Basics, Language Modeling Ch 10
Lec 06b (14 Sep) RNN (Contd.), Perplexity, Gradient Clipping, Checkpointing, Project 1 Ch 10
Project 1 START 14 Sep 2018, 05 pm Project1
Project 1 END 12 Oct 2018, 01 PM
02 & 09 Nov Project 1 In-Class Viva
11 Nov Mandatory submission of current version of Project 2
14 Nov Lecture on GANs
18 Nov Project 2 End. Try to submit by 16th night (before majors)
26-28 Nov Project2 Viva on one of these days (TBA)

Course Credit Assignment (Tentative)

Content Weightage
Project 45 %
End Term Exam 20 %
Assignments 15 %
In-class Quiz; Class Participation 10 %
Minor-I,II 10 %

Course Page Updates