ProduSket is project created as a Final Project for MSIB Startup Campus: AI Track - Computer Vision program. ProduSket takes advantage of General Adversarial Model (GAN) to turn fashion sketches into actual real life images. This project uses Pix2Pix Sketch2Shoes model as base and modifies it. Using Produsket you can turn your fashion sketch into an a real life image quickly. Produsket enables the speed up process of fashion item creation with this.
Full Name | Affiliation | Role | ||
---|---|---|---|---|
Muhammad Arsyad | Universitas Sebelas Maret | muharsyad2201@gmail.com | link | Team Lead |
Maulidia Nadhifa Aulia Shalsabila | Universitas Airlangga | maulidianadhifa@gmail.com | link | Team Member |
Pinka Ananda | Universitas Lampung | pinkaananda@gmail.com | link | Team Member |
Sultan Fahrezy Syahdwinata Nugraha | Universitas Indonesia | sultan.fahrezy.sn@gmail.com | link | Team Member |
Abel Yehud Silalahi | Universitas Jendral Achmad Yani Yogyakarta | abelyehuds@gmail.com | link | Team Member |
Anandhita Ganang Alimana | Universitas Indonesia | alimanaanandhita15@gmail.com | link | Team Member |
Sari Mita Dewi | STMIK Insan Pembangunan | sarimitadewi10@gmail.com | link | Team Member |
Nicholas Dominic | Startup Campus, AI Track | nic.dominic@icloud.com | link | Supervisor |
CPU | Intel(R) Xeon(R) CPU @ 2.00GHz |
GPU | Nvidia A100 (x1) |
ROM | 225 GB SSD |
RAM | 12.7 GB |
OS | Ubuntu 22.04.3 |
Kami menggunakan data berupa gambar fashion yang tersedia dari kaggle. Dataset yang kami gunakan sebantak 7 kelas yaitu gambar kacamata sebanyak 1000 data, jam tangan sebanyak 2558 gambar, tas sebanyak 1000 gambar, bawahan sebanyak 790 gambar, atasan sebanyak 1330 gambar, sepatu sebanyak 1000 gambar dan sandal sebanyak 1876 gambar. Dengan total sebanyak 8744 gambar dimana kami bagi menjadi dataset untuk training sebesar 70% atau sebanyak 6691 gambar, lalau dataset test sebesar 20% atau sebanyak 1906 gambar, dan data validasi sebesar 10% atau sebanyak 957 gambar. Setelah itu, kami lakukan image processing untuk mendapatkan gambar sketsa dengan cara edge detection. Berikut link untuk dataset yang telah dilakukan image processing
berikut contoh data
Describe all results found in your final project experiments, including hyperparameters tuning and architecture modification performances. Put it into table format. Please show pictures (of model accuracy, loss, etc.) for more clarity.
Inform your model validation performances, as follows:
Feel free to adjust the columns in the table below.
model | epoch | learning_rate | batch_size | optimizer | PNSR | Inception Score |
---|---|---|---|---|---|---|
pix_2_pix_pinka | 50 | 0.0002 | 36 | Adam | 34.0 | 1.307 |
pix_2_pix_sultan | 50 | 0.0002 | 36 | Adam | 17.21 | 0.789 |
Any improvements or modifications of your base model, should be summarized in this table. Feel free to adjust the columns in the table below.
model | GAN Mode | Architecture |
---|---|---|
pix_2_pix_pinka | Vanilla | ResNet |
pix_2pix_sultan | LSGAN | UNet |
Insert an image regarding your training and evaluation performances (especially their losses). The aim is to assess whether your model is fit, overfit, or underfit.
Berikut grafik discriminator loss dan generator loss
Berikut hasil gambar yang telah digenerate, dimana pada baris pertama merupakan gambar input, baris kedua merupakan gambar asli, dan baris ketiga merupakan hasil generate
Pada deployment kami menggunakan streamlit, dapat diakses pada link berikut : visiongen.streamlit.app.
berikut merupakan screenshot
anda dapat memasukan gambar sketsa lalu mengenerate untuk memperoleh gambar desain nyata, seperti pada video di bawah ini:
Provide a link to your short video, that should includes the project background and how it works.
Provide all links that support this final project, i.e., papers, GitHub repositories, websites, etc.
Provide your team's additional comments or final remarks for this project. For example,
If you find this project useful, we'd grateful if you cite this repository:
@article{
...
}
For academic and non-commercial use only.
This project entitled "Produsket : Transformasi Gambar Produk Dari Sketsa Dengan Cepat" is supported and funded by Startup Campus Indonesia and Indonesian Ministry of Education and Culture through the "Kampus Merdeka: Magang dan Studi Independen Bersertifikasi (MSIB)" program.