visiongen / Final-Project-StartupCampus-MSIB

MIT License
2 stars 1 forks source link

Produsket : Transformasi Gambar Produk Dari Sketsa Dengan Cepat

Project Description

ProduSket is project created as a Final Project for MSIB Startup Campus: AI Track - Computer Vision program. ProduSket takes advantage of General Adversarial Model (GAN) to turn fashion sketches into actual real life images. This project uses Pix2Pix Sketch2Shoes model as base and modifies it. Using Produsket you can turn your fashion sketch into an a real life image quickly. Produsket enables the speed up process of fashion item creation with this.

Contributor

Full Name Affiliation Email LinkedIn Role
Muhammad Arsyad Universitas Sebelas Maret muharsyad2201@gmail.com link Team Lead
Maulidia Nadhifa Aulia Shalsabila Universitas Airlangga maulidianadhifa@gmail.com link Team Member
Pinka Ananda Universitas Lampung pinkaananda@gmail.com link Team Member
Sultan Fahrezy Syahdwinata Nugraha Universitas Indonesia sultan.fahrezy.sn@gmail.com link Team Member
Abel Yehud Silalahi Universitas Jendral Achmad Yani Yogyakarta abelyehuds@gmail.com link Team Member
Anandhita Ganang Alimana Universitas Indonesia alimanaanandhita15@gmail.com link Team Member
Sari Mita Dewi STMIK Insan Pembangunan sarimitadewi10@gmail.com link Team Member
Nicholas Dominic Startup Campus, AI Track nic.dominic@icloud.com link Supervisor

Setup

Prerequisite Packages (Dependencies)

Environment

CPU Intel(R) Xeon(R) CPU @ 2.00GHz
GPU Nvidia A100 (x1)
ROM 225 GB SSD
RAM 12.7 GB
OS Ubuntu 22.04.3

Dataset

Kami menggunakan data berupa gambar fashion yang tersedia dari kaggle. Dataset yang kami gunakan sebantak 7 kelas yaitu gambar kacamata sebanyak 1000 data, jam tangan sebanyak 2558 gambar, tas sebanyak 1000 gambar, bawahan sebanyak 790 gambar, atasan sebanyak 1330 gambar, sepatu sebanyak 1000 gambar dan sandal sebanyak 1876 gambar. Dengan total sebanyak 8744 gambar dimana kami bagi menjadi dataset untuk training sebesar 70% atau sebanyak 6691 gambar, lalau dataset test sebesar 20% atau sebanyak 1906 gambar, dan data validasi sebesar 10% atau sebanyak 957 gambar. Setelah itu, kami lakukan image processing untuk mendapatkan gambar sketsa dengan cara edge detection. Berikut link untuk dataset yang telah dilakukan image processing

berikut contoh data

image

Results

Model Performance

Describe all results found in your final project experiments, including hyperparameters tuning and architecture modification performances. Put it into table format. Please show pictures (of model accuracy, loss, etc.) for more clarity.

1. Metrics

Inform your model validation performances, as follows:

Feel free to adjust the columns in the table below.

model epoch learning_rate batch_size optimizer PNSR Inception Score
pix_2_pix_pinka 50 0.0002 36 Adam 34.0 1.307
pix_2_pix_sultan 50 0.0002 36 Adam 17.21 0.789

2. Ablation Study

Any improvements or modifications of your base model, should be summarized in this table. Feel free to adjust the columns in the table below.

model GAN Mode Architecture
pix_2_pix_pinka Vanilla ResNet
pix_2pix_sultan LSGAN UNet

3. Training/Validation Curve

Insert an image regarding your training and evaluation performances (especially their losses). The aim is to assess whether your model is fit, overfit, or underfit.

Berikut grafik discriminator loss dan generator loss

Testing

Berikut hasil gambar yang telah digenerate, dimana pada baris pertama merupakan gambar input, baris kedua merupakan gambar asli, dan baris ketiga merupakan hasil generate

Deployment (Optional)

Pada deployment kami menggunakan streamlit, dapat diakses pada link berikut : visiongen.streamlit.app.

berikut merupakan screenshot

image

anda dapat memasukan gambar sketsa lalu mengenerate untuk memperoleh gambar desain nyata, seperti pada video di bawah ini:

video

Supporting Documents

Presentation Deck

Business Model Canvas

Short Video

Provide a link to your short video, that should includes the project background and how it works.

References

Provide all links that support this final project, i.e., papers, GitHub repositories, websites, etc.

Additional Comments

Provide your team's additional comments or final remarks for this project. For example,

  1. ...
  2. ...
  3. ...

How to Cite

If you find this project useful, we'd grateful if you cite this repository:

@article{
...
}

License

For academic and non-commercial use only.

Acknowledgement

This project entitled "Produsket : Transformasi Gambar Produk Dari Sketsa Dengan Cepat" is supported and funded by Startup Campus Indonesia and Indonesian Ministry of Education and Culture through the "Kampus Merdeka: Magang dan Studi Independen Bersertifikasi (MSIB)" program.