This repository contains code related to the pansharpening of PRISMA images by use of the PNN model (after clipping histogram values), as analyzed in the paper cited below:
Kremezi, M., Kristollari, V., Karathanassi, V., Topouzelis, K., Kolokoussis, P., Taggio, N., Aiello, A., Ceriola, G., Barbone, E. and Corradi, P., 2021. Pansharpening PRISMA Data for Marine Plastic Litter Detection Using Plastic Indexes. IEEE Access, 9, pp.61955-61971.
It can be accessed in: https://ieeexplore.ieee.org/abstract/document/9406795
Run:
"read_h5_PRISMA_file.py" to read L1 PRISMA hdf5 files.
"training_preprocessing.py" to apply pre-processing to the training input and output data.
"training_patches_creation.py" to create the training input and output patches.
"model_creation_and_training.py" to create and train the PNN model.
"inference_create_pansharpened_im.py" to make predictions and create the pansharpened image.
Detailed guidelines are included inside each script.
*The file "Preparing_input_files.txt" includes a link to access a Prisma L1 level image and detailed description about preparing the input files of the CNN.
*The file "PRISMA_L2D_georeference.py" contains information on georeferencing Prisma L2D level images.
If you use this code, please cite the below paper.
@article{kremezi2021pansharpening,
title={Pansharpening PRISMA Data for Marine Plastic Litter Detection Using Plastic Indexes},
author={Kremezi, Maria and Kristollari, Viktoria and Karathanassi, Vassilia and Topouzelis, Konstantinos and Kolokoussis, Pol and Taggio, Nicol{\`o} and Aiello, Antonello and Ceriola, Giulio and Barbone, Enrico and Corradi, Paolo},
journal={IEEE Access},
volume={9},
pages={61955--61971},
year={2021},
publisher={IEEE}
}