This repository is no longer maintained. I am no longer actively maintaining iCAN. Please refer to our ECCV 2020 work DRG for a stronger HOI detection framework in PyTorch.
Official TensorFlow implementation for iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection.
See the project page for more details. Please contact Chen Gao (chengao@vt.edu) if you have any questions.
This codebase was developed and tested with Python2.7, Tensorflow 1.1.0 or 1.2.0, CUDA 8.0 and Ubuntu 16.04.
git clone https://github.com/vt-vl-lab/iCAN.git
Download V-COCO and HICO-DET dataset. Setup V-COCO and COCO API. Setup HICO-DET evaluation code.
chmod +x ./misc/download_dataset.sh
./misc/download_dataset.sh
# Assume you cloned the repository to `iCAN_DIR'.
# If you have downloaded V-COCO or HICO-DET dataset somewhere else, you can create a symlink
# ln -s /path/to/your/v-coco/folder Data/
# ln -s /path/to/your/hico-det/folder Data/
chmod +x ./misc/download_detection_results.sh
./misc/download_detection_results.sh
python tools/Diagnose_VCOCO.py eval Results/300000_iCAN_ResNet50_VCOCO.pkl
python tools/Diagnose_VCOCO.py eval Results/300000_iCAN_ResNet50_VCOCO_Early.pkl
cd Data/ho-rcnn
matlab -r "Generate_detection; quit"
cd ../../
Here we evaluate our best detection results under Results/HICO_DET/1800000_iCAN_ResNet50_HICO
. If you want to evaluate a different detection result, please specify the filename in Data/ho-rcnn/Generate_detection.m
accordingly.
python tools/Diagnose_VCOCO.py diagnose Results/300000_iCAN_ResNet50_VCOCO.pkl
python tools/Diagnose_VCOCO.py diagnose Results/300000_iCAN_ResNet50_VCOCO_Early.pkl
chmod +x ./misc/download_training_data.sh
./misc/download_training_data.sh
python tools/Train_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO --num_iteration 300000
python tools/Train_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO_Early --num_iteration 300000
python tools/Train_ResNet_HICO.py --num_iteration 1800000
python tools/Test_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO --num_iteration 300000
python tools/Test_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO_Early --num_iteration 300000
python tools/Test_ResNet_HICO.py --num_iteration 1800000
Check tools/Visualization.ipynb
to see how to visualize the detection results.
cd $iCAN_DIR
chmod +x ./misc/setup_demo.sh
./misc/setup_demo.sh
demo/
folder.# images are saved in $iCAN_DIR/demo/
python ../tf-faster-rcnn/tools/Object_Detector.py --img_dir demo/ --img_format png --Demo_RCNN demo/Object_Detection.pkl
python tools/Demo.py --img_dir demo/ --Demo_RCNN demo/Object_Detection.pkl --HOI_Detection demo/HOI_Detection.pkl
tools/Demo.ipynb
to visualize the detection results.If you find this code useful for your research, please consider citing the following papers:
@inproceedings{gao2018ican,
author = {Gao, Chen and Zou, Yuliang and Huang, Jia-Bin},
title = {iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection},
booktitle = {British Machine Vision Conference},
year = {2018}
}
Codes are built upon tf-faster-rcnn. We thank Jinwoo Choi for the code review.