Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production machine learning models. Get started with W&B today, sign up for a W&B account!
Building an LLM app? Track, debug, evaluate, and monitor LLM apps with Weave, our new suite of tools for GenAI.
Documentation
See the [W&B Developer Guide](https://docs.wandb.ai/?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=documentation) and [API Reference Guide](https://docs.wandb.ai/ref?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=documentation) for a full technical description of the W&B platform.
# Quickstart
Get started with W&B in four steps:
1. First, sign up for a [W&B account](https://wandb.ai/login?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=quickstart).
2. Second, install the W&B SDK with [pip](https://pip.pypa.io/en/stable/). Navigate to your terminal and type the following command:
```bash
pip install wandb
```
3. Third, log into W&B:
```python
wandb.login()
```
4. Use the example code snippet below as a template to integrate W&B to your Python script:
```python
import wandb
# Start a W&B Run with wandb.init
run = wandb.init(project="my_first_project")
# Save model inputs and hyperparameters in a wandb.config object
config = run.config
config.learning_rate = 0.01
# Model training code here ...
# Log metrics over time to visualize performance with wandb.log
for i in range(10):
run.log({"loss": ...})
# Mark the run as finished, and finish uploading all data
run.finish()
```
That's it! Navigate to the W&B App to view a dashboard of your first W&B Experiment. Use the W&B App to compare multiple experiments in a unified place, dive into the results of a single run, and much more!
Example W&B Dashboard that shows Runs from an Experiment.
# Integrations
Use your favorite framework with W&B. W&B integrations make it fast and easy to set up experiment tracking and data versioning inside existing projects. For more information on how to integrate W&B with the framework of your choice, see the [Integrations chapter](https://docs.wandb.ai/guides/integrations) in the W&B Developer Guide.
🔥 PyTorch
Call `.watch` and pass in your PyTorch model to automatically log gradients and store the network topology. Next, use `.log` to track other metrics. The following example demonstrates an example of how to do this:
```python
import wandb
# 1. Start a new run
run = wandb.init(project="gpt4")
# 2. Save model inputs and hyperparameters
config = run.config
config.dropout = 0.01
# 3. Log gradients and model parameters
run.watch(model)
for batch_idx, (data, target) in enumerate(train_loader):
...
if batch_idx % args.log_interval == 0:
# 4. Log metrics to visualize performance
run.log({"loss": loss})
```
- Run an example [Google Colab Notebook](http://wandb.me/pytorch-colab).
- Read the [Developer Guide](https://docs.wandb.com/guides/integrations/pytorch?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate PyTorch with W&B.
- Explore [W&B Reports](https://app.wandb.ai/wandb/getting-started/reports/Pytorch--VmlldzoyMTEwNzM?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
🌊 TensorFlow/Keras
Use W&B Callbacks to automatically save metrics to W&B when you call `model.fit` during training.
The following code example demonstrates how your script might look like when you integrate W&B with Keras:
```python
# This script needs these libraries to be installed:
# tensorflow, numpy
import wandb
from wandb.keras import WandbMetricsLogger, WandbModelCheckpoint
import random
import numpy as np
import tensorflow as tf
# Start a run, tracking hyperparameters
run = wandb.init(
# set the wandb project where this run will be logged
project="my-awesome-project",
# track hyperparameters and run metadata with wandb.config
config={
"layer_1": 512,
"activation_1": "relu",
"dropout": random.uniform(0.01, 0.80),
"layer_2": 10,
"activation_2": "softmax",
"optimizer": "sgd",
"loss": "sparse_categorical_crossentropy",
"metric": "accuracy",
"epoch": 8,
"batch_size": 256,
},
)
# [optional] use wandb.config as your config
config = run.config
# get the data
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train, y_train = x_train[::5], y_train[::5]
x_test, y_test = x_test[::20], y_test[::20]
labels = [str(digit) for digit in range(np.max(y_train) + 1)]
# build a model
model = tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(config.layer_1, activation=config.activation_1),
tf.keras.layers.Dropout(config.dropout),
tf.keras.layers.Dense(config.layer_2, activation=config.activation_2),
]
)
# compile the model
model.compile(optimizer=config.optimizer, loss=config.loss, metrics=[config.metric])
# WandbMetricsLogger will log train and validation metrics to wandb
# WandbModelCheckpoint will upload model checkpoints to wandb
history = model.fit(
x=x_train,
y=y_train,
epochs=config.epoch,
batch_size=config.batch_size,
validation_data=(x_test, y_test),
callbacks=[
WandbMetricsLogger(log_freq=5),
WandbModelCheckpoint("models"),
],
)
# [optional] finish the wandb run, necessary in notebooks
run.finish()
```
Get started integrating your Keras model with W&B today:
- Run an example [Google Colab Notebook](https://wandb.me/intro-keras?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations)
- Read the [Developer Guide](https://docs.wandb.com/guides/integrations/keras?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Keras with W&B.
- Explore [W&B Reports](https://app.wandb.ai/wandb/getting-started/reports/Keras--VmlldzoyMTEwNjQ?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
🤗 Hugging Face Transformers
Pass `wandb` to the `report_to` argument when you run a script using a Hugging Face Trainer. W&B will automatically log losses,
evaluation metrics, model topology, and gradients.
**Note**: The environment you run your script in must have `wandb` installed.
The following example demonstrates how to integrate W&B with Hugging Face:
```python
# This script needs these libraries to be installed:
# numpy, transformers, datasets
import wandb
import os
import numpy as np
from datasets import load_dataset
from transformers import TrainingArguments, Trainer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return {"accuracy": np.mean(predictions == labels)}
# download prepare the data
dataset = load_dataset("yelp_review_full")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
small_train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = dataset["test"].shuffle(seed=42).select(range(300))
small_train_dataset = small_train_dataset.map(tokenize_function, batched=True)
small_eval_dataset = small_train_dataset.map(tokenize_function, batched=True)
# download the model
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert-base-uncased", num_labels=5
)
# set the wandb project where this run will be logged
os.environ["WANDB_PROJECT"] = "my-awesome-project"
# save your trained model checkpoint to wandb
os.environ["WANDB_LOG_MODEL"] = "true"
# turn off watch to log faster
os.environ["WANDB_WATCH"] = "false"
# pass "wandb" to the `report_to` parameter to turn on wandb logging
training_args = TrainingArguments(
output_dir="models",
report_to="wandb",
logging_steps=5,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
evaluation_strategy="steps",
eval_steps=20,
max_steps=100,
save_steps=100,
)
# define the trainer and start training
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
# [optional] finish the wandb run, necessary in notebooks
wandb.finish()
```
- Run an example [Google Colab Notebook](http://wandb.me/hf?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
- Read the [Developer Guide](https://docs.wandb.com/guides/integrations/huggingface?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Hugging Face with W&B.
⚡️ PyTorch Lightning
Build scalable, structured, high-performance PyTorch models with Lightning and log them with W&B.
```python
# This script needs these libraries to be installed:
# torch, torchvision, pytorch_lightning
import wandb
import os
from torch import optim, nn, utils
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
class LitAutoEncoder(pl.LightningModule):
def __init__(self, lr=1e-3, inp_size=28, optimizer="Adam"):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(inp_size * inp_size, 64), nn.ReLU(), nn.Linear(64, 3)
)
self.decoder = nn.Sequential(
nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, inp_size * inp_size)
)
self.lr = lr
# save hyperparameters to self.hparamsm auto-logged by wandb
self.save_hyperparameters()
def training_step(self, batch, batch_idx):
x, y = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = nn.functional.mse_loss(x_hat, x)
# log metrics to wandb
self.log("train_loss", loss)
return loss
def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=self.lr)
return optimizer
# init the autoencoder
autoencoder = LitAutoEncoder(lr=1e-3, inp_size=28)
# setup data
batch_size = 32
dataset = MNIST(os.getcwd(), download=True, transform=ToTensor())
train_loader = utils.data.DataLoader(dataset, shuffle=True)
# initialise the wandb logger and name your wandb project
wandb_logger = WandbLogger(project="my-awesome-project")
# add your batch size to the wandb config
wandb_logger.experiment.config["batch_size"] = batch_size
# pass wandb_logger to the Trainer
trainer = pl.Trainer(limit_train_batches=750, max_epochs=5, logger=wandb_logger)
# train the model
trainer.fit(model=autoencoder, train_dataloaders=train_loader)
# [optional] finish the wandb run, necessary in notebooks
wandb.finish()
```
- Run an example [Google Colab Notebook](http://wandb.me/lightning?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
- Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/lightning?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate PyTorch Lightning with W&B.
💨 XGBoost
Use W&B Callbacks to automatically save metrics to W&B when you call `model.fit` during training.
The following code example demonstrates how your script might look like when you integrate W&B with XGBoost:
```python
# This script needs these libraries to be installed:
# numpy, xgboost
import wandb
from wandb.xgboost import WandbCallback
import numpy as np
import xgboost as xgb
# setup parameters for xgboost
param = {
"objective": "multi:softmax",
"eta": 0.1,
"max_depth": 6,
"nthread": 4,
"num_class": 6,
}
# start a new wandb run to track this script
run = wandb.init(
# set the wandb project where this run will be logged
project="my-awesome-project",
# track hyperparameters and run metadata
config=param,
)
# download data from wandb Artifacts and prep data
run.use_artifact("wandb/intro/dermatology_data:v0", type="dataset").download(".")
data = np.loadtxt(
"./dermatology.data",
delimiter=",",
converters={33: lambda x: int(x == "?"), 34: lambda x: int(x) - 1},
)
sz = data.shape
train = data[: int(sz[0] * 0.7), :]
test = data[int(sz[0] * 0.7) :, :]
train_X = train[:, :33]
train_Y = train[:, 34]
test_X = test[:, :33]
test_Y = test[:, 34]
xg_train = xgb.DMatrix(train_X, label=train_Y)
xg_test = xgb.DMatrix(test_X, label=test_Y)
watchlist = [(xg_train, "train"), (xg_test, "test")]
# add another config to the wandb run
num_round = 5
run.config["num_round"] = 5
run.config["data_shape"] = sz
# pass WandbCallback to the booster to log its configs and metrics
bst = xgb.train(
param, xg_train, num_round, evals=watchlist, callbacks=[WandbCallback()]
)
# get prediction
pred = bst.predict(xg_test)
error_rate = np.sum(pred != test_Y) / test_Y.shape[0]
# log your test metric to wandb
run.summary["Error Rate"] = error_rate
# [optional] finish the wandb run, necessary in notebooks
run.finish()
```
- Run an example [Google Colab Notebook](https://wandb.me/xgboost?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
- Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/xgboost?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate XGBoost with W&B.
🧮 Sci-Kit Learn
Use wandb to visualize and compare your scikit-learn models' performance:
```python
# This script needs these libraries to be installed:
# numpy, sklearn
import wandb
from wandb.sklearn import plot_precision_recall, plot_feature_importances
from wandb.sklearn import plot_class_proportions, plot_learning_curve, plot_roc
import numpy as np
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# load and process data
wbcd = datasets.load_breast_cancer()
feature_names = wbcd.feature_names
labels = wbcd.target_names
test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(
wbcd.data, wbcd.target, test_size=test_size
)
# train model
model = RandomForestClassifier()
model.fit(X_train, y_train)
model_params = model.get_params()
# get predictions
y_pred = model.predict(X_test)
y_probas = model.predict_proba(X_test)
importances = model.feature_importances_
indices = np.argsort(importances)[::-1]
# start a new wandb run and add your model hyperparameters
run = wandb.init(project="my-awesome-project", config=model_params)
# Add additional configs to wandb
run.config.update(
{
"test_size": test_size,
"train_len": len(X_train),
"test_len": len(X_test),
}
)
# log additional visualisations to wandb
plot_class_proportions(y_train, y_test, labels)
plot_learning_curve(model, X_train, y_train)
plot_roc(y_test, y_probas, labels)
plot_precision_recall(y_test, y_probas, labels)
plot_feature_importances(model)
# [optional] finish the wandb run, necessary in notebooks
run.finish()
```
- Run an example [Google Colab Notebook](https://wandb.me/scikit-colab?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
- Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/scikit?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Scikit-Learn with W&B.
# W&B Hosting Options
Weights & Biases is available in the cloud or installed on your private infrastructure. Set up a W&B Server in a production environment in one of three ways:
1. [Production Cloud](https://docs.wandb.ai/guides/hosting/hosting-options/self-managed#on-prem-private-cloud?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): Set up a production deployment on a private cloud in just a few steps using terraform scripts provided by W&B.
2. [Dedicated Cloud](https://docs.wandb.ai/guides/hosting/hosting-options/wb-managed#dedicated-cloud?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): A managed, dedicated deployment on W&B's single-tenant infrastructure in your choice of cloud region.
3. [On-Prem/Bare Metal](https://docs.wandb.ai/guides/hosting/how-to-guides/bare-metal?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): W&B supports setting up a production server on most bare metal servers in your on-premise data centers. Quickly get started by running `wandb server` to easily start hosting W&B on your local infrastructure.
See the [Hosting documentation](https://docs.wandb.ai/guides/hosting?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting) in the W&B Developer Guide for more information.
# Python Version Support
We are committed to supporting our minimum required Python version for *at least* six months after its official end-of-life (EOL) date, as defined by the Python Software Foundation. You can find a list of Python EOL dates [here](https://devguide.python.org/versions/).
When we discontinue support for a Python version, we will increment the library’s minor version number to reflect this change.
# Contribution guidelines
Weights & Biases ❤️ open source, and we welcome contributions from the community! See the [Contribution guide](https://github.com/wandb/wandb/blob/main/CONTRIBUTING.md) for more information on the development workflow and the internals of the wandb library. For wandb bugs and feature requests, visit [GitHub Issues](https://github.com/wandb/wandb/issues) or contact support@wandb.com.
# W&B Community
Be a part of the growing W&B Community and interact with the W&B team in our [Discord](https://wandb.me/discord). Stay connected with the latest ML updates and tutorials with [W&B Fully Connected](https://wandb.ai/fully-connected).
# License
[MIT License](https://github.com/wandb/wandb/blob/main/LICENSE)