wandb / wandb

The AI developer platform. Use Weights & Biases to train and fine-tune models, and manage models from experimentation to production.
https://wandb.ai
MIT License
8.96k stars 661 forks source link
collaboration data-science data-versioning deep-learning experiment-track hyperparameter-optimization hyperparameter-search hyperparameter-tuning jax keras machine-learning ml-platform mlops model-versioning pytorch reinforcement-learning reproducibility tensorflow

Weights & Biases Weights & Biases

Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production machine learning models. Get started with W&B today, sign up for a W&B account!


Building an LLM app? Track, debug, evaluate, and monitor LLM apps with Weave, our new suite of tools for GenAI.

 

Documentation

Weights and Biases Experiments Weights and Biases Reports Weights and Biases Artifacts Weights and Biases Tables Weights and Biases Sweeps Weights and Biases Launch Weights and Biases Model Management Weights and Biases Prompts

See the [W&B Developer Guide](https://docs.wandb.ai/?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=documentation) and [API Reference Guide](https://docs.wandb.ai/ref?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=documentation) for a full technical description of the W&B platform. # Quickstart Get started with W&B in four steps: 1. First, sign up for a [W&B account](https://wandb.ai/login?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=quickstart). 2. Second, install the W&B SDK with [pip](https://pip.pypa.io/en/stable/). Navigate to your terminal and type the following command: ```bash pip install wandb ``` 3. Third, log into W&B: ```python wandb.login() ``` 4. Use the example code snippet below as a template to integrate W&B to your Python script: ```python import wandb # Start a W&B Run with wandb.init run = wandb.init(project="my_first_project") # Save model inputs and hyperparameters in a wandb.config object config = run.config config.learning_rate = 0.01 # Model training code here ... # Log metrics over time to visualize performance with wandb.log for i in range(10): run.log({"loss": ...}) # Mark the run as finished, and finish uploading all data run.finish() ``` That's it! Navigate to the W&B App to view a dashboard of your first W&B Experiment. Use the W&B App to compare multiple experiments in a unified place, dive into the results of a single run, and much more!

Example W&B Dashboard that shows Runs from an Experiment.

  # Integrations Use your favorite framework with W&B. W&B integrations make it fast and easy to set up experiment tracking and data versioning inside existing projects. For more information on how to integrate W&B with the framework of your choice, see the [Integrations chapter](https://docs.wandb.ai/guides/integrations) in the W&B Developer Guide.
🔥 PyTorch Call `.watch` and pass in your PyTorch model to automatically log gradients and store the network topology. Next, use `.log` to track other metrics. The following example demonstrates an example of how to do this: ```python import wandb # 1. Start a new run run = wandb.init(project="gpt4") # 2. Save model inputs and hyperparameters config = run.config config.dropout = 0.01 # 3. Log gradients and model parameters run.watch(model) for batch_idx, (data, target) in enumerate(train_loader): ... if batch_idx % args.log_interval == 0: # 4. Log metrics to visualize performance run.log({"loss": loss}) ``` - Run an example [Google Colab Notebook](http://wandb.me/pytorch-colab). - Read the [Developer Guide](https://docs.wandb.com/guides/integrations/pytorch?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate PyTorch with W&B. - Explore [W&B Reports](https://app.wandb.ai/wandb/getting-started/reports/Pytorch--VmlldzoyMTEwNzM?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
🌊 TensorFlow/Keras Use W&B Callbacks to automatically save metrics to W&B when you call `model.fit` during training. The following code example demonstrates how your script might look like when you integrate W&B with Keras: ```python # This script needs these libraries to be installed: # tensorflow, numpy import wandb from wandb.keras import WandbMetricsLogger, WandbModelCheckpoint import random import numpy as np import tensorflow as tf # Start a run, tracking hyperparameters run = wandb.init( # set the wandb project where this run will be logged project="my-awesome-project", # track hyperparameters and run metadata with wandb.config config={ "layer_1": 512, "activation_1": "relu", "dropout": random.uniform(0.01, 0.80), "layer_2": 10, "activation_2": "softmax", "optimizer": "sgd", "loss": "sparse_categorical_crossentropy", "metric": "accuracy", "epoch": 8, "batch_size": 256, }, ) # [optional] use wandb.config as your config config = run.config # get the data mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train, y_train = x_train[::5], y_train[::5] x_test, y_test = x_test[::20], y_test[::20] labels = [str(digit) for digit in range(np.max(y_train) + 1)] # build a model model = tf.keras.models.Sequential( [ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(config.layer_1, activation=config.activation_1), tf.keras.layers.Dropout(config.dropout), tf.keras.layers.Dense(config.layer_2, activation=config.activation_2), ] ) # compile the model model.compile(optimizer=config.optimizer, loss=config.loss, metrics=[config.metric]) # WandbMetricsLogger will log train and validation metrics to wandb # WandbModelCheckpoint will upload model checkpoints to wandb history = model.fit( x=x_train, y=y_train, epochs=config.epoch, batch_size=config.batch_size, validation_data=(x_test, y_test), callbacks=[ WandbMetricsLogger(log_freq=5), WandbModelCheckpoint("models"), ], ) # [optional] finish the wandb run, necessary in notebooks run.finish() ``` Get started integrating your Keras model with W&B today: - Run an example [Google Colab Notebook](https://wandb.me/intro-keras?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) - Read the [Developer Guide](https://docs.wandb.com/guides/integrations/keras?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Keras with W&B. - Explore [W&B Reports](https://app.wandb.ai/wandb/getting-started/reports/Keras--VmlldzoyMTEwNjQ?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
🤗 Hugging Face Transformers Pass `wandb` to the `report_to` argument when you run a script using a Hugging Face Trainer. W&B will automatically log losses, evaluation metrics, model topology, and gradients. **Note**: The environment you run your script in must have `wandb` installed. The following example demonstrates how to integrate W&B with Hugging Face: ```python # This script needs these libraries to be installed: # numpy, transformers, datasets import wandb import os import numpy as np from datasets import load_dataset from transformers import TrainingArguments, Trainer from transformers import AutoTokenizer, AutoModelForSequenceClassification def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return {"accuracy": np.mean(predictions == labels)} # download prepare the data dataset = load_dataset("yelp_review_full") tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") small_train_dataset = dataset["train"].shuffle(seed=42).select(range(1000)) small_eval_dataset = dataset["test"].shuffle(seed=42).select(range(300)) small_train_dataset = small_train_dataset.map(tokenize_function, batched=True) small_eval_dataset = small_train_dataset.map(tokenize_function, batched=True) # download the model model = AutoModelForSequenceClassification.from_pretrained( "distilbert-base-uncased", num_labels=5 ) # set the wandb project where this run will be logged os.environ["WANDB_PROJECT"] = "my-awesome-project" # save your trained model checkpoint to wandb os.environ["WANDB_LOG_MODEL"] = "true" # turn off watch to log faster os.environ["WANDB_WATCH"] = "false" # pass "wandb" to the `report_to` parameter to turn on wandb logging training_args = TrainingArguments( output_dir="models", report_to="wandb", logging_steps=5, per_device_train_batch_size=32, per_device_eval_batch_size=32, evaluation_strategy="steps", eval_steps=20, max_steps=100, save_steps=100, ) # define the trainer and start training trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, compute_metrics=compute_metrics, ) trainer.train() # [optional] finish the wandb run, necessary in notebooks wandb.finish() ``` - Run an example [Google Colab Notebook](http://wandb.me/hf?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations). - Read the [Developer Guide](https://docs.wandb.com/guides/integrations/huggingface?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Hugging Face with W&B.
⚡️ PyTorch Lightning Build scalable, structured, high-performance PyTorch models with Lightning and log them with W&B. ```python # This script needs these libraries to be installed: # torch, torchvision, pytorch_lightning import wandb import os from torch import optim, nn, utils from torchvision.datasets import MNIST from torchvision.transforms import ToTensor import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger class LitAutoEncoder(pl.LightningModule): def __init__(self, lr=1e-3, inp_size=28, optimizer="Adam"): super().__init__() self.encoder = nn.Sequential( nn.Linear(inp_size * inp_size, 64), nn.ReLU(), nn.Linear(64, 3) ) self.decoder = nn.Sequential( nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, inp_size * inp_size) ) self.lr = lr # save hyperparameters to self.hparamsm auto-logged by wandb self.save_hyperparameters() def training_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = nn.functional.mse_loss(x_hat, x) # log metrics to wandb self.log("train_loss", loss) return loss def configure_optimizers(self): optimizer = optim.Adam(self.parameters(), lr=self.lr) return optimizer # init the autoencoder autoencoder = LitAutoEncoder(lr=1e-3, inp_size=28) # setup data batch_size = 32 dataset = MNIST(os.getcwd(), download=True, transform=ToTensor()) train_loader = utils.data.DataLoader(dataset, shuffle=True) # initialise the wandb logger and name your wandb project wandb_logger = WandbLogger(project="my-awesome-project") # add your batch size to the wandb config wandb_logger.experiment.config["batch_size"] = batch_size # pass wandb_logger to the Trainer trainer = pl.Trainer(limit_train_batches=750, max_epochs=5, logger=wandb_logger) # train the model trainer.fit(model=autoencoder, train_dataloaders=train_loader) # [optional] finish the wandb run, necessary in notebooks wandb.finish() ``` - Run an example [Google Colab Notebook](http://wandb.me/lightning?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations). - Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/lightning?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate PyTorch Lightning with W&B.
💨 XGBoost Use W&B Callbacks to automatically save metrics to W&B when you call `model.fit` during training. The following code example demonstrates how your script might look like when you integrate W&B with XGBoost: ```python # This script needs these libraries to be installed: # numpy, xgboost import wandb from wandb.xgboost import WandbCallback import numpy as np import xgboost as xgb # setup parameters for xgboost param = { "objective": "multi:softmax", "eta": 0.1, "max_depth": 6, "nthread": 4, "num_class": 6, } # start a new wandb run to track this script run = wandb.init( # set the wandb project where this run will be logged project="my-awesome-project", # track hyperparameters and run metadata config=param, ) # download data from wandb Artifacts and prep data run.use_artifact("wandb/intro/dermatology_data:v0", type="dataset").download(".") data = np.loadtxt( "./dermatology.data", delimiter=",", converters={33: lambda x: int(x == "?"), 34: lambda x: int(x) - 1}, ) sz = data.shape train = data[: int(sz[0] * 0.7), :] test = data[int(sz[0] * 0.7) :, :] train_X = train[:, :33] train_Y = train[:, 34] test_X = test[:, :33] test_Y = test[:, 34] xg_train = xgb.DMatrix(train_X, label=train_Y) xg_test = xgb.DMatrix(test_X, label=test_Y) watchlist = [(xg_train, "train"), (xg_test, "test")] # add another config to the wandb run num_round = 5 run.config["num_round"] = 5 run.config["data_shape"] = sz # pass WandbCallback to the booster to log its configs and metrics bst = xgb.train( param, xg_train, num_round, evals=watchlist, callbacks=[WandbCallback()] ) # get prediction pred = bst.predict(xg_test) error_rate = np.sum(pred != test_Y) / test_Y.shape[0] # log your test metric to wandb run.summary["Error Rate"] = error_rate # [optional] finish the wandb run, necessary in notebooks run.finish() ``` - Run an example [Google Colab Notebook](https://wandb.me/xgboost?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations). - Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/xgboost?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate XGBoost with W&B.
🧮 Sci-Kit Learn Use wandb to visualize and compare your scikit-learn models' performance: ```python # This script needs these libraries to be installed: # numpy, sklearn import wandb from wandb.sklearn import plot_precision_recall, plot_feature_importances from wandb.sklearn import plot_class_proportions, plot_learning_curve, plot_roc import numpy as np from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split # load and process data wbcd = datasets.load_breast_cancer() feature_names = wbcd.feature_names labels = wbcd.target_names test_size = 0.2 X_train, X_test, y_train, y_test = train_test_split( wbcd.data, wbcd.target, test_size=test_size ) # train model model = RandomForestClassifier() model.fit(X_train, y_train) model_params = model.get_params() # get predictions y_pred = model.predict(X_test) y_probas = model.predict_proba(X_test) importances = model.feature_importances_ indices = np.argsort(importances)[::-1] # start a new wandb run and add your model hyperparameters run = wandb.init(project="my-awesome-project", config=model_params) # Add additional configs to wandb run.config.update( { "test_size": test_size, "train_len": len(X_train), "test_len": len(X_test), } ) # log additional visualisations to wandb plot_class_proportions(y_train, y_test, labels) plot_learning_curve(model, X_train, y_train) plot_roc(y_test, y_probas, labels) plot_precision_recall(y_test, y_probas, labels) plot_feature_importances(model) # [optional] finish the wandb run, necessary in notebooks run.finish() ``` - Run an example [Google Colab Notebook](https://wandb.me/scikit-colab?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations). - Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/scikit?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Scikit-Learn with W&B.
  # W&B Hosting Options Weights & Biases is available in the cloud or installed on your private infrastructure. Set up a W&B Server in a production environment in one of three ways: 1. [Production Cloud](https://docs.wandb.ai/guides/hosting/hosting-options/self-managed#on-prem-private-cloud?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): Set up a production deployment on a private cloud in just a few steps using terraform scripts provided by W&B. 2. [Dedicated Cloud](https://docs.wandb.ai/guides/hosting/hosting-options/wb-managed#dedicated-cloud?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): A managed, dedicated deployment on W&B's single-tenant infrastructure in your choice of cloud region. 3. [On-Prem/Bare Metal](https://docs.wandb.ai/guides/hosting/how-to-guides/bare-metal?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): W&B supports setting up a production server on most bare metal servers in your on-premise data centers. Quickly get started by running `wandb server` to easily start hosting W&B on your local infrastructure. See the [Hosting documentation](https://docs.wandb.ai/guides/hosting?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting) in the W&B Developer Guide for more information.   # Contribution guidelines Weights & Biases ❤️ open source, and we welcome contributions from the community! See the [Contribution guide](https://github.com/wandb/wandb/blob/main/CONTRIBUTING.md) for more information on the development workflow and the internals of the wandb library. For wandb bugs and feature requests, visit [GitHub Issues](https://github.com/wandb/wandb/issues) or contact support@wandb.com.   # W&B Community Be a part of the growing W&B Community and interact with the W&B team in our [Discord](https://wandb.me/discord). Stay connected with the latest ML updates and tutorials with [W&B Fully Connected](https://wandb.ai/fully-connected).   # License [MIT License](https://github.com/wandb/wandb/blob/main/LICENSE)