TensorRTx aims to implement popular deep learning networks with TensorRT network definition API.
Why don't we use a parser (ONNX parser, UFF parser, caffe parser, etc), but use complex APIs to build a network from scratch? I have summarized the advantages in the following aspects.
The basic workflow of TensorRTx is:
22 Oct 2024
. lindsayshuo: YOLOv8-obb18 Oct 2024
. zgjja: Rafactor docker image.11 Oct 2024
. mpj1234: YOLO119 Oct 2024
. Phoenix8215: GhostNet V1 and V2.21 Aug 2024
. Lemonononon: real-esrgan-general-x4v329 Jul 2024
. mpj1234: Check the YOLOv5, YOLOv8 & YOLOv10 in TensorRT 10.x API, branch → trt1029 Jul 2024
. mpj1234: YOLOv1021 Jun 2024
. WuxinrongY: YOLOv9-T, YOLOv9-S, YOLOv9-M28 Apr 2024
. lindsayshuo: YOLOv8-pose22 Apr 2024
. B1SH0PP: EfficientAd: Accurate Visual Anomaly Detection at Millisecond-Level Latencies.18 Apr 2024
. lindsayshuo: YOLOv8-p212 Mar 2024
. lindsayshuo: YOLOv8-cls11 Mar 2024
. WuxinrongY: YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information7 Mar 2024
. AadeIT: CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes17 Oct 2023
. Rex-LK: YOLOv8-SegEach folder has a readme inside, which explains how to run the models inside.
Following models are implemented.
Name | Description |
---|---|
mlp | the very basic model for starters, properly documented |
lenet | the simplest, as a "hello world" of this project |
alexnet | easy to implement, all layers are supported in tensorrt |
googlenet | GoogLeNet (Inception v1) |
inception | Inception v3, v4 |
mnasnet | MNASNet with depth multiplier of 0.5 from the paper |
mobilenet | MobileNet v2, v3-small, v3-large |
resnet | resnet-18, resnet-50 and resnext50-32x4d are implemented |
senet | se-resnet50 |
shufflenet | ShuffleNet v2 with 0.5x output channels |
squeezenet | SqueezeNet 1.1 model |
vgg | VGG 11-layer model |
yolov3-tiny | weights and pytorch implementation from ultralytics/yolov3 |
yolov3 | darknet-53, weights and pytorch implementation from ultralytics/yolov3 |
yolov3-spp | darknet-53, weights and pytorch implementation from ultralytics/yolov3 |
yolov4 | CSPDarknet53, weights from AlexeyAB/darknet, pytorch implementation from ultralytics/yolov3 |
yolov5 | yolov5 v1.0-v7.0 of ultralytics/yolov5, detection, classification and instance segmentation |
yolov7 | yolov7 v0.1, pytorch implementation from WongKinYiu/yolov7 |
yolov8 | yolov8, pytorch implementation from ultralytics |
yolov9 | The Pytorch implementation is WongKinYiu/yolov9. |
yolov10 | The Pytorch implementation is THU-MIG/yolov10. |
yolo11 | The Pytorch implementation is ultralytics. |
yolop | yolop, pytorch implementation from hustvl/YOLOP |
retinaface | resnet50 and mobilnet0.25, weights from biubug6/Pytorch_Retinaface |
arcface | LResNet50E-IR, LResNet100E-IR and MobileFaceNet, weights from deepinsight/insightface |
retinafaceAntiCov | mobilenet0.25, weights from deepinsight/insightface, retinaface anti-COVID-19, detect face and mask attribute |
dbnet | Scene Text Detection, weights from BaofengZan/DBNet.pytorch |
crnn | pytorch implementation from meijieru/crnn.pytorch |
ufld | pytorch implementation from Ultra-Fast-Lane-Detection, ECCV2020 |
hrnet | hrnet-image-classification and hrnet-semantic-segmentation, pytorch implementation from HRNet-Image-Classification and HRNet-Semantic-Segmentation |
psenet | PSENet Text Detection, tensorflow implementation from liuheng92/tensorflow_PSENet |
ibnnet | IBN-Net, pytorch implementation from XingangPan/IBN-Net, ECCV2018 |
unet | U-Net, pytorch implementation from milesial/Pytorch-UNet |
repvgg | RepVGG, pytorch implementation from DingXiaoH/RepVGG |
lprnet | LPRNet, pytorch implementation from xuexingyu24/License_Plate_Detection_Pytorch |
refinedet | RefineDet, pytorch implementation from luuuyi/RefineDet.PyTorch |
densenet | DenseNet-121, from torchvision.models |
rcnn | FasterRCNN and MaskRCNN, model from detectron2 |
tsm | TSM: Temporal Shift Module for Efficient Video Understanding, ICCV2019 |
scaled-yolov4 | yolov4-csp, pytorch from WongKinYiu/ScaledYOLOv4 |
centernet | CenterNet DLA-34, pytorch from xingyizhou/CenterNet |
efficientnet | EfficientNet b0-b8 and l2, pytorch from lukemelas/EfficientNet-PyTorch |
detr | DE⫶TR, pytorch from facebookresearch/detr |
swin-transformer | Swin Transformer - Semantic Segmentation, only support Swin-T. The Pytorch implementation is microsoft/Swin-Transformer |
real-esrgan | Real-ESRGAN. The Pytorch implementation is real-esrgan |
superpoint | SuperPoint. The Pytorch model is from magicleap/SuperPointPretrainedNetwork |
csrnet | CSRNet. The Pytorch implementation is leeyeehoo/CSRNet-pytorch |
EfficientAd | EfficientAd: Accurate Visual Anomaly Detection at Millisecond-Level Latencies. From anomalib |
The .wts files can be downloaded from model zoo for quick evaluation. But it is recommended to convert .wts from pytorch/mxnet/tensorflow model, so that you can retrain your own model.
GoogleDrive | BaiduPan pwd: uvv2
Some tricky operations encountered in these models, already solved, but might have better solutions.
Name | Description |
---|---|
BatchNorm | Implement by a scale layer, used in resnet, googlenet, mobilenet, etc. |
MaxPool2d(ceil_mode=True) | use a padding layer before maxpool to solve ceil_mode=True, see googlenet. |
average pool with padding | use setAverageCountExcludesPadding() when necessary, see inception. |
relu6 | use Relu6(x) = Relu(x) - Relu(x-6) , see mobilenet. |
torch.chunk() | implement the 'chunk(2, dim=C)' by tensorrt plugin, see shufflenet. |
channel shuffle | use two shuffle layers to implement channel_shuffle , see shufflenet. |
adaptive pool | use fixed input dimension, and use regular average pooling, see shufflenet. |
leaky relu | I wrote a leaky relu plugin, but PRelu in NvInferPlugin.h can be used, see yolov3 in branch trt4 . |
yolo layer v1 | yolo layer is implemented as a plugin, see yolov3 in branch trt4 . |
yolo layer v2 | three yolo layers implemented in one plugin, see yolov3-spp. |
upsample | replaced by a deconvolution layer, see yolov3. |
hsigmoid | hard sigmoid is implemented as a plugin, hsigmoid and hswish are used in mobilenetv3 |
retinaface output decode | implement a plugin to decode bbox, confidence and landmarks, see retinaface. |
mish | mish activation is implemented as a plugin, mish is used in yolov4 |
prelu | mxnet's prelu activation with trainable gamma is implemented as a plugin, used in arcface |
HardSwish | hard_swish = x * hard_sigmoid, used in yolov5 v3.0 |
LSTM | Implemented pytorch nn.LSTM() with tensorrt api |
Models | Device | BatchSize | Mode | Input Shape(HxW) | FPS |
---|---|---|---|---|---|
YOLOv3-tiny | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 333 |
YOLOv3(darknet53) | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 39.2 |
YOLOv3(darknet53) | Xeon E5-2620/GTX1080 | 1 | INT8 | 608x608 | 71.4 |
YOLOv3-spp(darknet53) | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 38.5 |
YOLOv4(CSPDarknet53) | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 35.7 |
YOLOv4(CSPDarknet53) | Xeon E5-2620/GTX1080 | 4 | FP32 | 608x608 | 40.9 |
YOLOv4(CSPDarknet53) | Xeon E5-2620/GTX1080 | 8 | FP32 | 608x608 | 41.3 |
YOLOv5-s v3.0 | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 142 |
YOLOv5-s v3.0 | Xeon E5-2620/GTX1080 | 4 | FP32 | 608x608 | 173 |
YOLOv5-s v3.0 | Xeon E5-2620/GTX1080 | 8 | FP32 | 608x608 | 190 |
YOLOv5-m v3.0 | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 71 |
YOLOv5-l v3.0 | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 43 |
YOLOv5-x v3.0 | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 29 |
YOLOv5-s v4.0 | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 142 |
YOLOv5-m v4.0 | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 71 |
YOLOv5-l v4.0 | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 40 |
YOLOv5-x v4.0 | Xeon E5-2620/GTX1080 | 1 | FP32 | 608x608 | 27 |
RetinaFace(resnet50) | Xeon E5-2620/GTX1080 | 1 | FP32 | 480x640 | 90 |
RetinaFace(resnet50) | Xeon E5-2620/GTX1080 | 1 | INT8 | 480x640 | 204 |
RetinaFace(mobilenet0.25) | Xeon E5-2620/GTX1080 | 1 | FP32 | 480x640 | 417 |
ArcFace(LResNet50E-IR) | Xeon E5-2620/GTX1080 | 1 | FP32 | 112x112 | 333 |
CRNN | Xeon E5-2620/GTX1080 | 1 | FP32 | 32x100 | 1000 |
Help wanted, if you got speed results, please add an issue or PR.
Any contributions, questions and discussions are welcomed, contact me by following info.
E-mail: wangxinyu_es@163.com
WeChat ID: wangxinyu0375 (可加我微信进tensorrtx交流群,备注:tensorrtx)